题目内容
如图所示,A、B为两块水平放置的金属板,通过闭合的开关S分别与电源两极相连,两板中央各有一个小孔a和b,在a孔正上方某处一带电质点由静止开始下落,不计空气阻力,该质点到达b孔时速度恰为零,然后返回.现要使带电质点能穿出b孔,可行的方法是( )
A、保持S闭合,将A板适当下移 | B、保持S闭合,将B板适当上移 | C、先断开S,再将A板适当下移 | D、先断开S,再将B板适当上移 |
分析:由题质点到达b孔时速度恰为零,根据动能定理列式.若保持S闭合时,将A板适当下移,重力做功和电场做功没有变化,质点恰好到达b孔速度为零,不能穿过b孔;将B板适当上移,重力做功小于电场力做功,质点没有到达b孔速度为零,然后返回,不能穿过b孔.若断开S时,将A板或B板适当移动,根据动能定理分析研究.
解答:解:设质点距离A板的高度h,A、B两板原来的距离为d,电压为U.质点的电量为q.
A、由题质点到达b孔时速度恰为零,根据动能定理得mg(h+d)-qU=0.
若保持S闭合,将A板适当下移,设质点到达b时速度为v,由动能定理得mg(h+d)-qU=
mv2,v=0,说明质点到达b孔时速度恰为零,然后返回,不能穿过b孔.故A错误.
B、若保持S闭合,将B板适当上移距离△d,由动能定理得mg(h+d-△d)-qU=
mv2,则v<0,说明质点没有到达b孔速度为零,然后返回,不能穿过b孔.故B错误.
C、若断开S时,将A板适当下移,板间电场强度不变,设A板下移距离为△d,质点进入电场的深度为d′时速度为零.
由动能定理得mg(h+△d+d′)-qEd′=0,又由原来情况有mg(h+d)-qEd=0.比较两式得,d′>d,说明质点点能穿出b孔,故C正确.
D、若断开S,再将B板适当上移,根据动能定理可知,质点到达b孔时速度没有减为零,故能穿过b孔.故D正确.
故选:CD.
A、由题质点到达b孔时速度恰为零,根据动能定理得mg(h+d)-qU=0.
若保持S闭合,将A板适当下移,设质点到达b时速度为v,由动能定理得mg(h+d)-qU=
1 |
2 |
B、若保持S闭合,将B板适当上移距离△d,由动能定理得mg(h+d-△d)-qU=
1 |
2 |
C、若断开S时,将A板适当下移,板间电场强度不变,设A板下移距离为△d,质点进入电场的深度为d′时速度为零.
由动能定理得mg(h+△d+d′)-qEd′=0,又由原来情况有mg(h+d)-qEd=0.比较两式得,d′>d,说明质点点能穿出b孔,故C正确.
D、若断开S,再将B板适当上移,根据动能定理可知,质点到达b孔时速度没有减为零,故能穿过b孔.故D正确.
故选:CD.
点评:本题应用动能定理分析质点的运动情况,其中用到一个重要推论:对于平行板电容器,当电量、正对面积不变,改变板间距离时,板间电场强度不变.
练习册系列答案
相关题目
如图所示,a、b为两个固定的带等量正电荷的点电荷,虚线ab、cd互相垂直平分,负电荷q由c点从静止释放,如果只受电场力作用,则下列关于此电荷运动的说法正确的是( )
A、从c到d电势先减小后增大 | B、在cd间做往复运动,经O点时速度最大 | C、从c到O加速度减小,从O到d加速度增大 | D、运动过程中动能与电势能总量不变 |