ÌâÄ¿ÄÚÈÝ
9£®Ä³ÈËÆïĦÍгµÓɾ²Ö¹´ÓAµØÑØƽֱ¹«Â·¾ ¾Ð¡´åׯʻÏò²¢Í£ÔÚDµØ£¬B¡¢CΪС´åׯµÄÁ½¸ö´å¿Ú£¬AD×ÜλÒÆΪx=1km£¬Îª°²È«Æð¼û£¬ÒªÇó´©¹ý´åׯµÄËٶȲ»µÃ³¬¹ýv1=4m/s£¬ABºÍBC¶ÎµÄ¾àÀë·Ö±ðΪx1=242m¡¢x2=300m£¬ÒÑ֪ĦÍгµµÄ×î´óËÙ¶ÈΪv=10m/s¡¢Æ𶯼ÓËٶȴóСΪa1=4m/s2¡¢Öƶ¯¼ÓËٶȴóСΪa2=8m/s2£®£¨1£©·Ö±ðÇóĦÍгµ´Ó¾²Ö¹¼ÓËÙµ½vºÍ´Óv¼õËÙµ½v1Ëù¾¹ýµÄλÒÆ£»
£¨2£©Çó¸ÃĦÍгµ´ÓAµ½DµÄ×î¶Ìʱ¼ä£®
·ÖÎö £¨1£©¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄËÙ¶ÈλÒƹ«Ê½Çó³ö¼ÓËٺͼõËÙÔ˶¯µÄλÒÆ£®
£¨2£©µ±Ä¦ÍгµÏȼÓËÙµ½×î´óËٶȣ¬µ½´ï´å¿ÚÇ°¼õËÙÔ˶¯¹æ¶¨Ëٶȣ¬È»ºóÔÙÔö´óµ½×î´óËٶȣ¬µ½´ï´å¿ÚÇ°ÔÙ¼õСµ½¹æ¶¨µÄËٶȣ¬¹ýÁ˵ڶþ¸ö´å¿Ú£¬ÔÙ¼ÓËÙµ½×î´óËٶȣ¬×îºó¼õËÙµ½Á㣬ÕâÑùËùÓõÄʱ¼ä×î¶Ì£¬½áºÏËÙ¶Èʱ¼ä¹«Ê½ºÍλÒƹ«Ê½½øÐÐÇó½â£®
½â´ð ½â£º£¨1£©¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄËÙ¶ÈλÒƹ«Ê½µÃ£ºv2=2a1x1£¬
½âµÃ£º${x}_{1}=\frac{{v}^{2}}{2{a}_{1}}=\frac{100}{8}m=12.5m$£®
v¼õËÙµ½v1Ëù¾¹ýµÄλÒÆΪ£º${x}_{2}=\frac{{v}^{2}-{{v}_{1}}^{2}}{2{a}_{2}}=\frac{100-16}{16}m=5.25m$£®
£¨2£©ÔÚAB¶Î£¬´ïµ½×î´óËٶȵÄʱ¼äΪ£º${t}_{1}=\frac{v}{{a}_{1}}=\frac{10}{4}s=2.5s$£¬
ËٶȼõΪv1µÄʱ¼äΪ£º${t}_{2}=\frac{v-{v}_{1}}{{a}_{2}}=\frac{10-4}{8}s=0.75s$£¬
ÔòÔÚAB¶ÎÔÈËÙÔ˶¯µÄʱ¼äΪ£º${t}_{3}=\frac{242-12.5-5.25}{10}s=22.425s$£®
BC¶ÎÔÈËÙÔ˶¯µÄʱ¼äΪ£º${t}_{4}=\frac{300}{4}s=75s$£¬
CD¶ÎÔȼÓËÙÔ˶¯µÄʱ¼ä${t}_{5}=\frac{10-4}{4}s=1.5s$£¬ÔȼÓËÙÔ˶¯µÄλÒÆ${x}_{3}=\frac{4+10}{2}¡Á1.5m=10.5m$
CD½×¶ÎÔȼõËÙÔ˶¯µÄʱ¼äΪ£º${t}_{6}=\frac{v}{{a}_{2}}=\frac{10}{8}s=1.25s$£¬
ÔȼõËÙÔ˶¯µÄλÒÆΪ£º${x}_{4}=\frac{{v}^{2}}{2{a}_{2}}=\frac{100}{16}m=6.25m$£¬
ÔòCD¶ÎÔÈËÙÔ˶¯µÄʱ¼äΪ£º${t}_{7}=\frac{1000-242-300-10.5-6.25}{10}s=44.125s$£¬
´ÓAµ½DµÄ×î¶Ìʱ¼äΪ£ºt=t1+t2+t3+t4+t5+t6+t7£¬
´úÈëÊý¾Ý½âµÃ£ºt=147.55s£®
´ð£º£¨1£©Ä¦Íгµ´Ó¾²Ö¹¼ÓËÙµ½vºÍ´Óv¼õËÙµ½v1Ëù¾¹ýµÄλÒÆ·Ö±ðΪ12.5mºÍ5.25m£®
£¨2£©¸ÃĦÍгµ´ÓAµ½DµÄ×î¶Ìʱ¼äΪ147.55s£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕÔȱäËÙÖ±ÏßÔ˶¯µÄÔ˶¯Ñ§¹«Ê½£¬ÀíÇåÕû¸ö¹ý³ÌÖеÄÔ˶¯¹æÂÉ£¬½áºÏÔ˶¯Ñ§¹«Ê½Áé»îÇó½â£®
A£® | ¹ì¼£a | B£® | ¹ì¼£b | C£® | ¹ì¼£c | D£® | ¹ì¼£d |
A£® | ÕâÁ½¿ÅÎÀÐǵļÓËٶȴóСÏàµÈ£¬¾ùΪ$\frac{{R}^{2}g}{{r}^{2}}$ | |
B£® | ÎÀÐÇ1ÏòºóÅçÆø¾ÍÒ»¶¨ÄÜ×·ÉÏÎÀÐÇ2 | |
C£® | ÎÀÐÇ1ÓÉλÖÃAÔ˶¯ÖÁλÖÃBËùÐèµÄʱ¼äΪ$\frac{¦Ðr}{R}$$\sqrt{\frac{r}{g}}$ | |
D£® | ÎÀÐÇ1ÓÉλÖÃAÔ˶¯µ½Î»ÖÃBµÄ¹ý³ÌÖÐÍòÓÐÒýÁ¦×ö¹¦ÎªÁã |
A£® | ÎïÌå¾¹ýPµãʱÊúÖ±·ÖËÙ¶ÈΪ$\sqrt{\frac{{2{E_k}}}{m}-v_0^2}$ | |
B£® | ´Ë¹ý³ÌÖÐÎïÌåϽµµÄ¸ß¶È$\frac{E_k}{mg}-\frac{v_0^2}{mg}$ | |
C£® | ´Ë¹ý³ÌÖÐÎïÌåµÄˮƽλÒÆΪ$\frac{v_0}{g}\sqrt{\frac{E_k}{g}-{v_0}}$ | |
D£® | ´Ë¹ý³ÌÖÐÎïÌåÔ˶¯µÄƽ¾ùËÙ¶ÈΪ$\sqrt{\frac{3v_0^2}{4}+\frac{E_k}{2m}}$ |
A£® | ÈÈÁ¦Ñ§µÚ¶þ¶¨ÂÉ¿ÉÃèÊöΪ¡°²»¿ÉÄÜʹÈÈÁ¿ÓɵÍÎÂÎïÌå´«µÝµ½¸ßÎÂÎïÌ塱 | |
B£® | ·Ö×Ó¼äµÄÏ໥×÷ÓÃÁ¦Ëæ×Å·Ö×Ó¼ä¾àÀëµÄÔö´ó£¬Ò»¶¨ÏȼõСºóÔö´ó | |
C£® | Ö»ÒªÖªµÀË®µÄĦ¶ûÖÊÁ¿ºÍË®·Ö×ÓµÄÖÊÁ¿£¬¾Í¿ÉÒÔ¼ÆËã³ö°¢·üÙ¤µÂÂÞ³£Êý | |
D£® | ÓÉÓÚÒºÌå±íÃæ·Ö×Ó¼ä¾àÀë´óÓÚÒºÌåÄÚ²¿·Ö×Ó¼äµÄ¾àÀ룬ҺÃæ·Ö×Ó¼ä±íÏÖΪÒýÁ¦£¬ËùÒÔÒºÌå±íÃæ¾ßÓÐÊÕËõµÄÇ÷ÊÆ | |
E£® | ÓûîÈûѹËõÆø¸×ÄÚµÄÀíÏëÆøÌ壬¶ÔÆøÌå×öÁË3.0¡Ál05JµÄ¹¦£¬Í¬Ê±ÆøÌåÏòÍâ½ç·Å³ö1.5¡Ál05JµÄÈÈÁ¿£¬ÔòÆøÌåÄÚÄÜÔö¼ÓÁË1.5¡Ál05J |