ÌâÄ¿ÄÚÈÝ
19£®ÔÚ¾øԵˮƽÃæÉÏ£¬·ÅÒ»ÖÊÁ¿Îªm=2.0¡Á10-3kgµÄ´øÕýµç»¬¿éA£¬Ëù´øµçÁ¿Îªq=1.0¡Á10-7C£¬ÔÚ»¬¿éAµÄ×ó±ß?´¦·ÅÖÃÒ»¸ö²»´øµç¡¢ÖÊÁ¿M=4.0¡Á10-3kgµÄ¾øÔµ»¬¿éB£¬BµÄ×ó¶Ë½Ó´¥£¨²»Á¬½Ó£©Óڹ̶¨ÔÚÊúֱǽ±ÚµÄÇᵯ»ÉÉÏ£¬Çᵯ»É´¦ÓÚ×ÔȻ״̬£¬µ¯»ÉÔ³¤s=0.05m£¬ÈçͼËùʾ£®ÔÚˮƽ·½Ïò¼ÓһˮƽÏò×óµÄÔÈÇ¿µç³¡£¬µç³¡Ç¿¶ÈµÄ´óСΪE=4.0¡Á105N/C£¬»¬¿éAÓɾ²Ö¹ÊͷźóÏò×󻬶¯²¢Ó뻬¿éB·¢ÉúÅöײ£¬ÉèÅöײʱ¼ä¼«¶Ì£¬Åöײºó½áºÏÔÚÒ»Æð¹²Í¬Ô˶¯µÄËÙ¶ÈΪv=1m/s£¬Á½ÎïÌåÒ»ÆðѹËõµ¯»ÉÖÁ×î¶Ì´¦£¨µ¯ÐÔÏÞ¶ÈÄÚ£©Ê±£¬µ¯»ÉµÄµ¯ÐÔÊÆÄÜE0=3.2¡Á10-3J£®ÉèÁ½»¬¿éÌå»ý´óС²»¼Æ£¬ÓëˮƽÃæ¼äµÄ¶¯Ä¦²ÁÒòÊýΪ¦Ì=0.50£¬Ä¦²Á²»Æðµç£¬Åöײ²»Ê§µç£¬gÈ¡10m/s2£®Ç󣺣¨1£©Á½»¬¿éÔÚÅöײǰµÄ˲ʱ£¬»¬¿éAµÄËٶȣ»
£¨2£©»¬¿éAÆðʼÔ˶¯Î»ÖÃÓ뻬¿éBµÄ¾àÀël£»
£¨3£©B»¬¿é±»µ¯»Éµ¯¿ªºó¾àÊúÆðǽµÄ×î´ó¾àÀësm£®
·ÖÎö £¨1£©A¡¢BÁ½»¬¿éÅöײ¹ý³Ì¶¯Á¿Êغ㣬ÒÑÖªÅöºóµÄ¹²Í¬Ëٶȣ¬¸ù¾Ý¶¯Á¿Êغ㶨Âɼ´¿ÉÇóµÃÅöÇ°AµÄËٶȣ®
£¨2£©¶ÔÓÚÅöÇ°AÏò×óÔȼÓËÙÔ˶¯¹ý³Ì£¬ÔËÓö¯Äܶ¨Àí¿ÉÇó³öl£®
£¨3£©ÅöºóA¡¢BÒ»ÆðѹËõµ¯»ÉÖÁ×î¶Ì£¬É赯»ÉѹËõÁ¿Îªx1£¬Óɶ¯Äܶ¨Àí¼´¿ÉÇóµÃµ¯»ÉѹËõÁ¿£¬µ¯»ÉѹËõ¹ý³ÌÖе糡Á¦×öÕý¹¦£¬µçÊÆÄܵļõÉÙÁ¿µÈÓڵ糡Á¦Ëù×öµÄ¹¦£»Éè·´µ¯ºóA¡¢B»¬ÐÐÁËx2¾àÀëºóËٶȼõΪÁ㣬Óɶ¯Äܶ¨ÀíÇóµÃx2£¬±È½Ïµç³¡Á¦Ó뻬¶¯Ä¦²ÁÁ¦µÄ¹Øϵ£¬Åжϻ¬¿éµÄÔ˶¯Çé¿ö£¬×îÖÕÇó³ö×î´ó¾àÀ룮
½â´ð ½â£º£¨1£©ÉèAÓëBÅöײǰAµÄËÙ¶ÈΪv1£¬Åöײ¹ý³Ì¶¯Á¿Êغ㣬ÓУº
mv1=£¨M+m£©v
´úÈëÊý¾Ý½âµÃ£ºv1=3m/s
£¨2£©¶ÔA£¬´Ó¿ªÊ¼Ô˶¯ÖÁÅöײB֮ǰ£¬¸ù¾Ý¶¯Äܶ¨Àí£¬ÓУº
qEl-¦Ìmgl=$\frac{1}{2}m{{v}_{1}}^{2}$-0
´úÈëÊý¾Ý½âµÃ£ºl=0.3m¡¡
£¨3£©É赯»É±»Ñ¹ËõÖÁ×î¶ÌʱµÄѹËõÁ¿Îªs1£¬¶ÔABÕûÌ壬´ÓÅöºóÖÁµ¯»ÉѹËõ×î¶Ì¹ý³ÌÖУ¬¸ù¾ÝÄÜÁ¿Êغ㶨ÂÉ£¬ÓУº
qEs1+$\frac{1}{2}£¨M+m£©{v}^{2}$=¦Ìmg s1+E0¡¡¡¡
´úÈëÊý¾Ý½âµÃ£ºs1=0.02m¡¡
É赯»ÉµÚÒ»´Î»Ö¸´µ½Ô³¤Ê±£¬AB¹²Í¬¶¯ÄÜΪEk£¬¸ù¾ÝÄÜÁ¿Êغ㶨ÂÉ£¬ÓУº
E0=qEs1+¦Ì£¨M+m£©g s1+Ek ¢Ù
ÔÚµ¯»É°ÑBAÍùÓÒÍƳöµÄ¹ý³ÌÖУ¬ÓÉÓÚBÊܵ½Ïò×óµÄĦ²ÁÁ¦Ð¡ÓÚAÊܵ½µÄÏò×óµÄĦ²ÁÁ¦ºÍµç³¡Á¦Ö®ºÍ£®¹ÊÖÁËûÃÇֹ֮ͣǰ£¬Á½ÕßûÓзֿª£®
µ¯»ÉµÚÒ»´Î½«ABµ¯³öÖÁÁ½Õßͬʱͬ´¦Í£Ö¹Ê±£¬B¾àÀëÊúֱǽ±Ú×îÔ¶£¬Éè´Ëʱ¾àÀ뵯»ÉÔ³¤´¦Îªs2£¬¸ù¾Ý¶¯Äܶ¨Àí£¬ÓУº
-qEs2-¦Ì£¨M+m£©g s2=0-Ek ¢Ú
¢Ù¢ÚÁªÁ¢²¢´úÈëÊý¾Ý½âµÃ£ºs2=0.03m
¹ÊBÀëǽ±ÚµÄ×î´ó¾àÀësm=s+s2=0.08m
´ð£º
£¨1£©Á½»¬¿éÔÚÅöײǰµÄ˲ʱ£¬»¬¿éAµÄËÙ¶ÈΪ3m/s£®
£¨2£©»¬¿éAÆðʼÔ˶¯Î»ÖÃÓ뻬¿éBµÄ¾àÀëΪ0.3m£®
£¨3£©B»¬¿é±»µ¯»Éµ¯¿ªºó¾àÊúֱǽµÄ×î´ó¾àÀësmΪ0.08m£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˶¯Äܶ¨ÀíºÍ¶¯Á¿Êغ㶨ÂɵÄÖ±½ÓÓ¦Óã¬ÒªÅàÑø×Ô¼º·ÖÎöÎïÀí¹ý³Ì£¬°ÑÎÕÎïÀí¹æÂÉ£¬½â¾ö×ÛºÏÌâµÄÄÜÁ¦£®
A£® | ½«A°åˮƽ·½ÏòÏò×óÒƶ¯ÉÙÐí£¬¦È½Ç±ä´ó | |
B£® | ½«B°åÊúÖ±ÏòÉÏÒƶ¯ÉÙÐí£¬µçÁ÷±íÖÐÓÐÒÔÏÂÏòÉϵĵçÁ÷ | |
C£® | µ±»¬¶¯Í·P´ÓaÏòb»¬¶¯Ê±£¬¦È½Ç±äС | |
D£® | µ±»¬¶¯Í·P´ÓaÏòb»¬¶¯Ê±£¬µçÁ÷±íÖÐÓдÓÉÏÏòϵĵçÁ÷ |
A£® | $\frac{\sqrt{{F}_{1}^{2}+{F}_{2}^{2}}}{2}$ | B£® | $\sqrt{\frac{{F}_{1}^{2}+{F}_{2}^{2}}{2}}$ | C£® | $\frac{\sqrt{{F}_{1}+{F}_{2}}}{2}$ | D£® | $\sqrt{\frac{{F}_{1}+{F}_{2}}{2}}$ |