ÌâÄ¿ÄÚÈÝ
£¨Ñ¡ÐÞÄ£¿é3-5£©
£¨1£©¹ØÓÚÔ×ӽṹºÍÔ×Ӻˣ¬ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ
A£®ÀûÓæÁÁ£×ÓÉ¢ÉäʵÑé¿ÉÒÔ¹ÀËãÔ×Ӻ˵İ뾶
B£®ÀûÓæÁÁ£×ÓÉ¢ÉäʵÑé¿ÉÒÔ¹ÀËãºËÍâµç×ÓµÄÔ˶¯°ë¾¶
C£®Ô×ӵĺËʽ½á¹¹Ä£ÐͺܺõؽâÊÍÁËÇâÔ×Ó¹âÆ×µÄʵÑé
D£®´¦ÓÚ¼¤·¢Ì¬µÄÇâÔ×ӷųö¹â×Ӻ󣬺ËÍâµç×ÓÔ˶¯µÄ¶¯Äܽ«Ôö´ó
£¨2£©Ò»¸öÖÊÁ¿Îªm0¾²Ö¹µÄ¦Ø½é×ÓË¥±äΪÈý¸ö¾²Ö¹ÖÊÁ¿¶¼ÊÇmµÄ¦Ð½é×Ó£¬ËüÃÇÔÚͬһƽÃæÄÚÔ˶¯£¬±Ë´ËÔ˶¯·½ÏòµÄ¼Ð½ÇΪ120¡ã£¬¹âÔÚÕæ¿ÕÖеĴ«²¥ËÙ¶ÈΪc£¬Ôòÿ¸ö¦Ð½é×ӵĶ¯ÄÜΪ £®
£¨3£©Èçͼ5Ëùʾ£¬¹â»¬Ë®Æ½ÃæÉÏA¡¢BÁ½Ð¡³µÖÊÁ¿¶¼ÊÇM£¬A³µÍ·Õ¾Á¢Ò»ÖÊÁ¿ÎªmµÄÈË£¬Á½³µÔÚͬһֱÏßÉÏÏàÏòÔ˶¯£®Îª±ÜÃâÁ½³µÏàײ£¬ÈË´ÓA³µÔ¾µ½B³µÉÏ£¬×îÖÕA³µÍ£Ö¹Ô˶¯£¬B³µ»ñµÃ·´ÏòËÙ¶Èv0£¬ÊÔÇó£º
¢ÙÁ½Ð¡³µºÍÈË×é³ÉµÄϵͳµÄ³õ¶¯Á¿´óС£»
¢ÚΪ±ÜÃâÁ½³µÏàײ£¬ÇÒÒªÇóÈËÌøÔ¾ËٶȾ¡Á¿Ð¡£¬ÔòÈËÌøÉÏB³µºó£¬A³µµÄËٶȶà´ó£¿
£¨1£©¹ØÓÚÔ×ӽṹºÍÔ×Ӻˣ¬ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ
A£®ÀûÓæÁÁ£×ÓÉ¢ÉäʵÑé¿ÉÒÔ¹ÀËãÔ×Ӻ˵İ뾶
B£®ÀûÓæÁÁ£×ÓÉ¢ÉäʵÑé¿ÉÒÔ¹ÀËãºËÍâµç×ÓµÄÔ˶¯°ë¾¶
C£®Ô×ӵĺËʽ½á¹¹Ä£ÐͺܺõؽâÊÍÁËÇâÔ×Ó¹âÆ×µÄʵÑé
D£®´¦ÓÚ¼¤·¢Ì¬µÄÇâÔ×ӷųö¹â×Ӻ󣬺ËÍâµç×ÓÔ˶¯µÄ¶¯Äܽ«Ôö´ó
£¨2£©Ò»¸öÖÊÁ¿Îªm0¾²Ö¹µÄ¦Ø½é×ÓË¥±äΪÈý¸ö¾²Ö¹ÖÊÁ¿¶¼ÊÇmµÄ¦Ð½é×Ó£¬ËüÃÇÔÚͬһƽÃæÄÚÔ˶¯£¬±Ë´ËÔ˶¯·½ÏòµÄ¼Ð½ÇΪ120¡ã£¬¹âÔÚÕæ¿ÕÖеĴ«²¥ËÙ¶ÈΪc£¬Ôòÿ¸ö¦Ð½é×ӵĶ¯ÄÜΪ
£¨3£©Èçͼ5Ëùʾ£¬¹â»¬Ë®Æ½ÃæÉÏA¡¢BÁ½Ð¡³µÖÊÁ¿¶¼ÊÇM£¬A³µÍ·Õ¾Á¢Ò»ÖÊÁ¿ÎªmµÄÈË£¬Á½³µÔÚͬһֱÏßÉÏÏàÏòÔ˶¯£®Îª±ÜÃâÁ½³µÏàײ£¬ÈË´ÓA³µÔ¾µ½B³µÉÏ£¬×îÖÕA³µÍ£Ö¹Ô˶¯£¬B³µ»ñµÃ·´ÏòËÙ¶Èv0£¬ÊÔÇó£º
¢ÙÁ½Ð¡³µºÍÈË×é³ÉµÄϵͳµÄ³õ¶¯Á¿´óС£»
¢ÚΪ±ÜÃâÁ½³µÏàײ£¬ÇÒÒªÇóÈËÌøÔ¾ËٶȾ¡Á¿Ð¡£¬ÔòÈËÌøÉÏB³µºó£¬A³µµÄËٶȶà´ó£¿
·ÖÎö£º£¨1£©¸ù¾Ý¦ÁÁ£×ÓÉ¢ÉäʵÑé¿ÉÒÔ¹ÀËãÔ×Ӻ˵İ뾶£®²£¶ûÄ£ÐÍ¿ÉÒԺܺõؽâÊÍÇâÔ×Ó¹âÆ×ʵÑ飮ͨ¹ý¹ìµÀ°ë¾¶µÄ±ä»¯£¬½áºÏ¿âÂØÒýÁ¦ÌṩÏòÐÄÁ¦±È½Ïµç×Ó¶¯Äܵı仯£®
£¨2£©¸ù¾Ý°®Òò˹̹ÖÊÄÜ·½³ÌÇó³öÿ¸ö¦Ð½é×ӵĶ¯ÄÜ£®
£¨3£©¸ù¾Ý¶¯Á¿µÄ±í´ïʽÇó³ö³õ״̬ϵͳµÄ³õ¶¯Á¿´óС£¬×¥×¡±ÜÃâÁ½³µÇ¡ºÃ²»»á·¢ÉúÅöײ£¬×îÖÕÁ½³µºÍÈ˾ßÓÐÏàͬËٶȣ¬½áºÏ¶¯Á¿Êغ㶨ÂÉÇó³öA³µµÄËٶȣ®
£¨2£©¸ù¾Ý°®Òò˹̹ÖÊÄÜ·½³ÌÇó³öÿ¸ö¦Ð½é×ӵĶ¯ÄÜ£®
£¨3£©¸ù¾Ý¶¯Á¿µÄ±í´ïʽÇó³ö³õ״̬ϵͳµÄ³õ¶¯Á¿´óС£¬×¥×¡±ÜÃâÁ½³µÇ¡ºÃ²»»á·¢ÉúÅöײ£¬×îÖÕÁ½³µºÍÈ˾ßÓÐÏàͬËٶȣ¬½áºÏ¶¯Á¿Êغ㶨ÂÉÇó³öA³µµÄËٶȣ®
½â´ð£º½â£º£¨1£©A¡¢ÀûÓæÁÁ£×ÓÉ¢ÉäʵÑé¿ÉÒÔ¹ÀËãÔ×Ӻ˵İ뾶£¬ÎÞ·¨µÃ³öµç×ӵİ뾶£®¹ÊAÕýÈ·£¬B´íÎó£®
C¡¢Ô×ӵĺËʽ½á¹¹Ä£ÐÍÎÞ·¨½âÊÍÁËÇâÔ×Ó¹âÆ×µÄʵÑ飬²£¶ûÄ£ÐÍÄܹ»ºÜºÃ½âÊÍ£®¹ÊC´íÎó£®
D¡¢´¦ÓÚ¼¤·¢Ì¬µÄÇâÔ×ӷųö¹â×Óºó£¬Äܼ¶½µµÍ£¬¹ìµÀ°ë¾¶¼õС£¬¸ù¾Ýk
=m
Öª£¬µç×Ó¶¯ÄÜÔö´ó£®¹ÊDÕýÈ·£®
¹ÊÑ¡AD£®
£¨2£©¸ù¾Ý°®Òò˹̹ÖÊÄÜ·½³ÌµÃ£¬(m0-3m)c2=3Ek
½âµÃEk=
(m0-3m)c2£®
£¨3£©¢ÙÓɶ¯Á¿Êغ㶨ÂÉ¿ÉÖª£¬ÏµÍ³µÄ³õ¶¯Á¿´óС
p=£¨M+m£©v0
¢ÚΪ±ÜÃâÁ½³µÇ¡ºÃ²»»á·¢ÉúÅöײ£¬×îÖÕÁ½³µºÍÈ˾ßÓÐÏàͬËٶȣ¨ÉèΪv£©£¬Ôò
£¨M+m£©v0=£¨2M+m£©v
½âµÃ v=
¹Ê´ð°¸Îª£º£¨1£©AD £¨2£©
(m0-3m)c2
£¨3£©¢Ù£¨M+m£©v0£¬¢Ú
£®
C¡¢Ô×ӵĺËʽ½á¹¹Ä£ÐÍÎÞ·¨½âÊÍÁËÇâÔ×Ó¹âÆ×µÄʵÑ飬²£¶ûÄ£ÐÍÄܹ»ºÜºÃ½âÊÍ£®¹ÊC´íÎó£®
D¡¢´¦ÓÚ¼¤·¢Ì¬µÄÇâÔ×ӷųö¹â×Óºó£¬Äܼ¶½µµÍ£¬¹ìµÀ°ë¾¶¼õС£¬¸ù¾Ýk
e2 |
r2 |
v2 |
r |
¹ÊÑ¡AD£®
£¨2£©¸ù¾Ý°®Òò˹̹ÖÊÄÜ·½³ÌµÃ£¬(m0-3m)c2=3Ek
½âµÃEk=
1 |
3 |
£¨3£©¢ÙÓɶ¯Á¿Êغ㶨ÂÉ¿ÉÖª£¬ÏµÍ³µÄ³õ¶¯Á¿´óС
p=£¨M+m£©v0
¢ÚΪ±ÜÃâÁ½³µÇ¡ºÃ²»»á·¢ÉúÅöײ£¬×îÖÕÁ½³µºÍÈ˾ßÓÐÏàͬËٶȣ¨ÉèΪv£©£¬Ôò
£¨M+m£©v0=£¨2M+m£©v
½âµÃ v=
(M+m)v0 |
2M+m |
¹Ê´ð°¸Îª£º£¨1£©AD £¨2£©
1 |
3 |
£¨3£©¢Ù£¨M+m£©v0£¬¢Ú
(M+m)v0 |
2M+m |
µãÆÀ£º±¾Ì⿼²éÑ¡ÐÞ3-5ÖеÄÄÚÈÝ£¬ÄѶȲ»´ó£¬¹Ø¼üÊÇÊìϤ½Ì²Ä£¬Àμǻù±¾¸ÅÄîºÍ»ù±¾¹æÂÉ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿