ÌâÄ¿ÄÚÈÝ
15£®Èçͼ£¬½«Ð¡íÀÂëÖÁÓÚ×ÀÃæÉϵı¡Ö½°åÉÏ£¬ÓÃˮƽÏòÓÒµÄÀÁ¦½«Ö½°åѸËÙ³é³ö£¬íÀÂëµÄÒƶ¯ºÜС£¬Õâ¾ÍÊÇ´ó¼ÒÊìϤµÄ¹ßÐÔÑÝʾʵÑ飮ÈôíÀÂëºÍÖ½°åµÄÖÊÁ¿·Ö±ðΪMºÍm£¬¸÷½Ó´¥Ãæ¼äµÄ¶¯Ä¦²ÁÒòÊý¾ùΪ¦Ì£¬íÀÂëÓëÖ½°å×ó¶ËµÄ¾àÀë¼°×ÀÃæÓҶ˵ľàÀë¾ùΪd£®ÏÖÓÃˮƽÏòÓҵĺ㶨ÀÁ¦FÀ¶¯Ö½°å£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©A£® | Ö½°åÏà¶ÔíÀÂëÔ˶¯Ê±£¬Ö½°åËùÊÜĦ²ÁÁ¦µÄ´óСΪ¦Ì£¨M+m£©g | |
B£® | Ҫʹֽ°åÏà¶ÔíÀÂëÔ˶¯£¬FÒ»¶¨´óÓÚ2¦Ì£¨M+m£©g | |
C£® | ÈôíÀÂëÓëÖ½°å·ÖÀëʱµÄËÙ¶ÈСÓÚ$\sqrt{¦Ìgd}$£¬íÀÂë²»»á´Ó×ÀÃæÉϵôÏ | |
D£® | µ±F=¦Ì£¨2M+4m£©gʱ£¬íÀÂëÇ¡ºÃµ½´ï×ÀÃæ±ßÔµ |
·ÖÎö Ó¦ÓÃĦ²ÁÁ¦¹«Ê½Çó³öÖ½°åÓëíÀÂëÊܵ½µÄĦ²ÁÁ¦£¬È»ºóÇó³öĦ²ÁÁ¦´óС£®¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËٶȣ¬ÒªÊ¹Ö½°åÏà¶ÔÓÚíÀÂëÔ˶¯£¬Ö½°åµÄ¼ÓËÙ¶ÈÓ¦´óÓÚíÀÂëµÄ¼ÓËٶȣ¬È»ºóÇó³öÀÁ¦µÄ×îСֵ£®
µ±F=¦Ì£¨2M+4m£©gʱ£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ·ÖÎöÇó³öíÀÂëºÍÖ½°å¼ÓËٶȣ¬½áºÏÔ˶¯Ñ§¹«Ê½Çó³ö·ÖÀëʱíÀÂëµÄËٶȣ¬½áºÏËÙ¶ÈλÒƹ«Ê½Çó³öíÀÂëËٶȼõΪÁãµÄλÖ㬴ӶøÅжϳöíÀÂëµÄλÖÃ
½â´ð ½â£ºA¡¢µ±Ö½°åÏà¶ÔíÀÂëÔ˶¯Ê±£¬Ö½°åËùÊܵÄĦ²ÁÁ¦£º¦Ì£¨M+m£©g+¦ÌMg£¬¹ÊA´íÎó£®
B¡¢ÉèíÀÂëµÄ¼ÓËÙ¶ÈΪa1£¬Ö½°åµÄ¼ÓËÙ¶ÈΪa2£¬ÔòÓУº¦ÌMg=Ma1£¬F-¦ÌMg-¦Ì£¨M+m£©g=ma2£¬·¢ÉúÏà¶ÔÔ˶¯ÐèÒªa2£¾a1£¬½âµÃ£ºF£¾2¦Ì£¨M+m£©g£¬¹ÊBÕýÈ·£®
C¡¢ÈôíÀÂëÓëÖ½°å·ÖÀëʱµÄËÙ¶ÈСÓÚ$\sqrt{¦Ìgd}$£¬íÀÂëÔȼÓËÙÔ˶¯µÄλÒÆСÓÚ$\frac{{v}^{2}}{2a}$=$\frac{d}{2}$£¬ÔȼõËÙÔ˶¯µÄλÒÆСÓÚ$\frac{{v}^{2}}{2a¡ä}$=$\frac{¦Ìgd}{2¦Ìg}$=$\frac{d}{2}$£¬Ôò×ÜλÒÆСÓÚd£¬²»»á´Ó×ÀÃæµôÏ£¬¹ÊCÕýÈ·£®
D¡¢µ±F=¦Ì£¨2M+4m£©gʱ£¬íÀÂëδÍÑÀëʱµÄ¼ÓËÙ¶Èa1=¦Ìg£¬Ö½°åµÄ¼ÓËٶȣºa2=$\frac{F-¦Ì£¨M+m£©g-¦ÌMg}{m}$=3¦Ìg£¬¸ù¾Ý$\frac{1}{2}$a2t2-$\frac{1}{2}$a1t2=d£¬½âµÃ£ºt=$\sqrt{\frac{d}{¦Ìg}}$£¬Ôò´ËʱíÀÂëµÄËÙ¶Èv=a1t=$\sqrt{¦Ìgd}$£¬íÀÂëÍÑÀëÖ½°åºó×öÔȼõËÙÔ˶¯£¬ÔȼõËÙÔ˶¯µÄ¼ÓËٶȴóСa¡ä=¦Ìg£¬ÔòÔȼõËÙÔ˶¯µÄλÒÆ£ºx=$\frac{{v}^{2}}{2a¡ä}$=$\frac{1}{2}$d£¬¶øÔȼÓËÙÔ˶¯µÄλÒÆx¡ä=$\frac{1}{2}$a1t2=$\frac{1}{2}$d£¬ÔòíÀÂëÇ¡ºÃµ½´ï×ÀÃæ±ßÔµ£¬¹ÊDÕýÈ·£®
¹ÊÑ¡£ºBCD£®
µãÆÀ ±¾Ì⿼²éÁËÇóÀÁ¦´óС£¬Ó¦ÓÃĦ²ÁÁ¦¹«Ê½Çó³öĦ²ÁÁ¦´óС£¬ÖªµÀÀ¶¯ÎïÌåÐèÒªÂú×ãµÄÌõ¼þ£¬Ó¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÓëÔ˶¯Ñ§¹«Ê½¼´¿ÉÕýÈ·½âÌ⣮
A£® | h¡Ý2.5R | B£® | h¡Ý2R | C£® | h¡Ý2.5R»òh¡ÜR | D£® | 2R¡Üh¡Ü2.5R»òh¡ÜR |
A£® | ºÏÍâÁ¦×ö¹¦Îª$\frac{1}{3}$mgh | B£® | Ôö¼ÓµÄ¶¯ÄÜΪ$\frac{2}{3}$mgh | ||
C£® | ¿Ë·þĦ²ÁÁ¦×ö¹¦Îª$\frac{1}{3}$mgh | D£® | ¼õÉٵĻúеÄÜΪ$\frac{1}{6}$mgh |
A£® | 3h | B£® | $\frac{7}{3}$h | C£® | 2h | D£® | $\frac{4}{3}$h |
A£® | $\frac{{\sqrt{3}}}{3}{v_0}$ $\frac{1}{2}{v_0}$ | B£® | $\frac{{\sqrt{3}}}{3}{v_0}$ $\frac{{\sqrt{3}}}{3}{v_0}$ | C£® | $\frac{1}{2}{v_0}$ $\frac{{\sqrt{3}}}{3}{v_0}$ | D£® | $\frac{{\sqrt{3}}}{6}{v_0}$ $\frac{{\sqrt{3}}}{3}{v_0}$ |