题目内容
【题目】如图所示,在直角坐标系xOy中,在y<d的区域内分布有指向y轴正方向的匀强电场,在d<y<2d的区域内分布有垂直于xOy平面向里的匀强磁场,MN为电场和磁场的边界,在y=2d处放置一垂直于y轴的足够大金属挡板,带电粒子打到板上即被吸收,一质量为m、电量为+q的粒子以初速度v0由坐标原点O处沿x轴正方向射入电场,已知电场强度大小为,粒子的重力不计。
(1)求粒子第一次进入磁场时速度v的大小和方向;
(2)要使粒子不打到挡板上,磁感应强度应满足什么条件?
(3)通过调节磁感应强度的大小,可让该粒子两次经过磁场后刚好通过x轴上x=4d的点P(图中未画出),求此时磁感应强度的大小。
【答案】(1)2v0(2)B>(3)
【解析】
(1)粒子在电场中只受电场力作用做类平抛运动,有加速度
设v与水平方向的夹角为θ,
联立解得:
(2)在磁场中做匀速圆周运动,有
根据几何关系可得:要使粒子不打到挡板上,粒子做圆周运动的轨道半径:
联立解得:
从而要满足题意必须B﹥
(3)在电场中做类平抛运动,有
联立解得:
由题,有
解得:
又
解得:
练习册系列答案
相关题目