ÌâÄ¿ÄÚÈÝ
ijʵÑéС×éÔÚ½øÐС°Óõ¥°Ú²â¶¨ÖØÁ¦¼ÓËٶȡ±µÄʵÑéÖУ¬ÒÑÖªµ¥°ÚÔÚ°Ú¶¯¹ý³ÌÖеİڽÇСÓÚ5¡ã£»ÔÚ²âÁ¿µ¥°ÚµÄÖÜÆÚʱ£¬´Óµ¥°ÚÔ˶¯µ½×îµÍµã¿ªÊ¼¼ÆʱÇÒ¼ÇÊýΪ1£¬µ½µÚn´Î¾¹ý×îµÍµãËùÓõÄʱ¼äÄÚΪt£»ÔÚ²âÁ¿µ¥°ÚµÄ°Ú³¤Ê±£¬ÏÈÓúÁÃ׿̶ȳ߲âµÃÐü¹ÒºóµÄ°ÚÏß³¤£¨´ÓÐüµãµ½°ÚÇòµÄ×îÉ϶ˣ©ÎªL£¬ÔÙÓÃÂÝÐý²â΢Æ÷²âµÃ°ÚÇòµÄÖ±¾¶Îªd£®
£¨1£©¸Ãµ¥°ÚÔÚ°Ú¶¯¹ý³ÌÖеÄÖÜÆÚTΪ
£®
£¨2£©ÓÃÉÏÊöÎïÀíÁ¿µÄ·ûºÅд³öÇóÖØÁ¦¼ÓËٶȵÄÒ»°ã±í´ïʽg=
£®
£¨3£©ÊµÑé½áÊøºó£¬Ä³Í¬Ñ§·¢ÏÖËû²âµÃµÄÖØÁ¦¼ÓËٶȵÄÖµ×ÜÊÇÆ«´ó£¬ÆäÔÒò¿ÉÄÜÊÇÏÂÊöÔÒòÖеÄ
A£®µ¥°ÚµÄÐüµãδ¹Ì¶¨½ô£¬Õñ¶¯ÖгöÏÖËɶ¯£¬Ê¹°ÚÏßÔö³¤ÁË
B£®°Ñn´Î°Ú¶¯µÄʱ¼äÎó¼ÇΪ£¨n+1£©´Î°Ú¶¯µÄʱ¼ä
C£®ÒÔ°ÚÏß³¤×÷Ϊ°Ú³¤À´¼ÆËã
D£®ÒÔ°ÚÏß³¤Óë°ÚÇòµÄÖ±¾¶Ö®ºÍ×÷Ϊ°Ú³¤À´¼ÆË㣮
£¨1£©¸Ãµ¥°ÚÔÚ°Ú¶¯¹ý³ÌÖеÄÖÜÆÚTΪ
2t |
n-1 |
2t |
n-1 |
£¨2£©ÓÃÉÏÊöÎïÀíÁ¿µÄ·ûºÅд³öÇóÖØÁ¦¼ÓËٶȵÄÒ»°ã±í´ïʽg=
¦Ð2(n-1)2(2L+d) |
2t2 |
¦Ð2(n-1)2(2L+d) |
2t2 |
£¨3£©ÊµÑé½áÊøºó£¬Ä³Í¬Ñ§·¢ÏÖËû²âµÃµÄÖØÁ¦¼ÓËٶȵÄÖµ×ÜÊÇÆ«´ó£¬ÆäÔÒò¿ÉÄÜÊÇÏÂÊöÔÒòÖеÄ
BD
BD
£®A£®µ¥°ÚµÄÐüµãδ¹Ì¶¨½ô£¬Õñ¶¯ÖгöÏÖËɶ¯£¬Ê¹°ÚÏßÔö³¤ÁË
B£®°Ñn´Î°Ú¶¯µÄʱ¼äÎó¼ÇΪ£¨n+1£©´Î°Ú¶¯µÄʱ¼ä
C£®ÒÔ°ÚÏß³¤×÷Ϊ°Ú³¤À´¼ÆËã
D£®ÒÔ°ÚÏß³¤Óë°ÚÇòµÄÖ±¾¶Ö®ºÍ×÷Ϊ°Ú³¤À´¼ÆË㣮
·ÖÎö£º¸ù¾Ý´Óµ¥°ÚÔ˶¯µ½×îµÍµã¿ªÊ¼¼ÆʱÇÒ¼ÇÊýΪ1£¬µ½µÚn´Î¾¹ý×îµÍµãËùÓõÄʱ¼äÄÚΪt£¬È·¶¨µ¥°ÚÈ«Õñ¶¯µÄ´ÎÊý£¬ÔÙÇó½âÖÜÆÚ£¬
ÓÉÖÜÆÚ¹«Ê½T=2¦Ð
£¬´úÈë°Ú³¤£ºl=L+
d¿ÉÇóÖØÁ¦¼ÓËÙ¶È
¶ÔÓÚ²âÁ¿Îó²î¿É¸ù¾ÝʵÑéÔÀí½øÐзÖÎö£®
ÓÉÖÜÆÚ¹«Ê½T=2¦Ð
|
1 |
2 |
¶ÔÓÚ²âÁ¿Îó²î¿É¸ù¾ÝʵÑéÔÀí½øÐзÖÎö£®
½â´ð£º½â£º£¨1£©ÓÉÌ⣬´Óµ¥°ÚÔ˶¯µ½×îµÍµã¿ªÊ¼¼ÆʱÇÒ¼ÇÊýΪ1£¬µ½µÚn´Î¾¹ý×îµÍµãËùÓõÄʱ¼äÄÚΪt£¬Ôòµ¥°ÚÈ«Õñ¶¯µÄ´ÎÊýΪ£ºN=
£¬ÖÜÆÚΪ£º
T=
=
£¨2£©µ¥°ÚµÄ³¤¶ÈΪ£ºl=L+
d£¬Óɵ¥°ÚµÄÖÜÆÚ¹«Ê½T=2¦Ð
£¬µÃ£ºg=
½«l=L+
d£¬T=
£¬´úÈë½âµÃ£ºg=
£¨3£©A¡¢°ÚÏßÉ϶ËδÀι̵ØϵÓÚÐüµã£¬Õñ¶¯ÖгöÏÖËɶ¯£¬Ê¹°ÚÏß³¤¶ÈÔö¼ÓÁË£¬°Ú³¤µÄ²âÁ¿Öµ±Èʵ¼ÊֵС£¬¸ù¾Ýg=
¿ÉÖª£¬²âµÃµÄgӦƫС£®¹ÊA´íÎó£»
B¡¢ÊµÑéÖÐÎó½«n´ÎÈ«Õñ¶¯¼ÆΪn+1´Î£¬¸ù¾ÝT=
Çó³öµÄÖÜÆÚ±äС£¬gÆ«´ó£®¹ÊBÕýÈ·£»
C¡¢ÒÔ°ÚÏß³¤×÷Ϊ°Ú³¤À´¼ÆË㣬°Ú³¤Æ«Ð¡£¬¸ù¾Ýg=
¿ÉÖª£¬²âµÃµÄgӦƫС£®¹ÊC´íÎó£»
D¡¢ÒÔ°ÚÏß³¤Óë°ÚÇòµÄÖ±¾¶Ö®ºÍ×÷Ϊ°Ú³¤À´¼ÆË㣬°Ú³¤Æ«´ó£¬¸ù¾Ýg=
¿ÉÖª£¬²âµÃµÄgӦƫ´ó£®¹ÊDÕýÈ·£®
¹ÊÑ¡£ºBD
¹Ê´ð°¸Îª£º£¨1£©
£¬£¨2£©
£¬£¨3£©BD£®
n-1 |
2 |
T=
t |
N |
2t |
n-1 |
£¨2£©µ¥°ÚµÄ³¤¶ÈΪ£ºl=L+
1 |
2 |
|
4¦Ð2l |
T2 |
½«l=L+
1 |
2 |
2t |
n-1 |
¦Ð2(n-1)2(2L+d) |
2t2 |
£¨3£©A¡¢°ÚÏßÉ϶ËδÀι̵ØϵÓÚÐüµã£¬Õñ¶¯ÖгöÏÖËɶ¯£¬Ê¹°ÚÏß³¤¶ÈÔö¼ÓÁË£¬°Ú³¤µÄ²âÁ¿Öµ±Èʵ¼ÊֵС£¬¸ù¾Ýg=
4¦Ð2l |
T2 |
B¡¢ÊµÑéÖÐÎó½«n´ÎÈ«Õñ¶¯¼ÆΪn+1´Î£¬¸ù¾ÝT=
t |
N |
C¡¢ÒÔ°ÚÏß³¤×÷Ϊ°Ú³¤À´¼ÆË㣬°Ú³¤Æ«Ð¡£¬¸ù¾Ýg=
4¦Ð2l |
T2 |
D¡¢ÒÔ°ÚÏß³¤Óë°ÚÇòµÄÖ±¾¶Ö®ºÍ×÷Ϊ°Ú³¤À´¼ÆË㣬°Ú³¤Æ«´ó£¬¸ù¾Ýg=
4¦Ð2l |
T2 |
¹ÊÑ¡£ºBD
¹Ê´ð°¸Îª£º£¨1£©
2t |
n-1 |
¦Ð2(n-1)2(2L+d) |
2t2 |
µãÆÀ£º±¾ÌâÖе¥°ÚµÄÖÜÆÚ²ÉÓÃÀÛ»ý·¨²âÁ¿µÄ£¬¼ÆËãÖÜÆÚʱ£¬Òª×¼È·Ëã³öµ¥°ÚÈ«Õñ¶¯µÄ´ÎÊý£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿