题目内容
某人站在离地20m平台边缘,以20m/s的初速度竖直向上抛出一石块,不考虑空气阻力,g=10m/s2,求:
(1)从抛出点算起,物体上升的最大高度是多少?
(2)物体落到地面的时间是多少?
(1)从抛出点算起,物体上升的最大高度是多少?
(2)物体落到地面的时间是多少?
(1)根据竖直上抛运动规律,石块上升的最大高度为:
h=
=
m=20m
(2)根据vt2-v02=2as
得:vt=±
=±
m/sm/s=±20
m/s
由于石块落地时的速度方向与初速度相反,所以:vt=-20
m/s
根据vt=v0+at得到:
t=
=
s=2(
+1)s
即石块从抛出到落地所用时间为2(
+1)s,石块落地的速度为30m/s,方向竖直向下.
答:(1)从抛出点算起,物体上升的最大高度是20m;
(2)物体落到地面的时间是2(
+1)s.
h=
| ||
2g |
202 |
2×10 |
(2)根据vt2-v02=2as
得:vt=±
|
202+2×(-10)×(-20) |
2 |
由于石块落地时的速度方向与初速度相反,所以:vt=-20
2 |
根据vt=v0+at得到:
t=
vt-v0 |
a |
-20
| ||
-10 |
2 |
即石块从抛出到落地所用时间为2(
2 |
答:(1)从抛出点算起,物体上升的最大高度是20m;
(2)物体落到地面的时间是2(
2 |
练习册系列答案
相关题目