题目内容
如图所示,水平台面AB距地面的高度h=0.8m.有一滑块从A点以初速度v0的在台面上做匀变速直线运动,滑块与平台间的动摩擦因数μ=0.25.滑块运动到平台边缘的B点后以速度vB水平飞出,且测出滑块落地点到平台边缘的水平距离s=2.0m.已知AB=2.2m.不计空气阻力,g取10m/s2.求:
(1)滑块从B点飞出时的速度大小;
(2)滑块在A点的初速度v0的大小.
(1)滑块从B点飞出时的速度大小;
(2)滑块在A点的初速度v0的大小.
分析:(1)根据平抛运动的规律求出滑块从B点飞出时的速度大小.
(2)根据牛顿第二定律,结合运动学公式求出滑块在A点的初速度v0的大小.
(2)根据牛顿第二定律,结合运动学公式求出滑块在A点的初速度v0的大小.
解答:解:(1)平抛运动:h=
gt2,
s=vBt,
解得:vB=5m/s.
(2)由牛顿第二定律:μ m g=m a,
运动学公式vB2-v02=-2 a s,
解得:v0=6m/s.
答:(1)滑块从B点飞出时的速度大小为5m/s.
(2)滑块在A点的初速度v0的大小为6m/s.
1 |
2 |
s=vBt,
解得:vB=5m/s.
(2)由牛顿第二定律:μ m g=m a,
运动学公式vB2-v02=-2 a s,
解得:v0=6m/s.
答:(1)滑块从B点飞出时的速度大小为5m/s.
(2)滑块在A点的初速度v0的大小为6m/s.
点评:解决本题的关键掌握平抛运动在水平方向和竖直方向上的运动规律,结合运动学公式进行求解.
练习册系列答案
相关题目