ÌâÄ¿ÄÚÈÝ
7£®¡°Ì«¿ÕÁ£×Ó̽²âÆ÷¡±ÊÇÓɼÓËÙ¡¢Æ«×ªºÍÊÕ¼¯Èý²¿·Ö×é³É£¬ÆäÔÀí¿É¼ò»¯ÈçÏ£ºÈçͼ1Ëùʾ£¬·øÉä×´µÄ¼ÓËٵ糡ÇøÓò±ß½çΪÁ½¸öͬÐÄƽÐаëÔ²»¡Ã棬ԲÐÄΪO£¬ÍâÔ²»¡ÃæABµÄµçÊÆΪ2¦Õ£¨¦Õ£¾o£©£¬ÄÚÔ²»¡ÃæCDµÄµçÊÆΪϕ£¬×ã¹»³¤µÄÊÕ¼¯°åMNƽÐб߽çACDB£¬ACDBÓëMN°åµÄ¾àÀëΪL£®¼ÙÉèÌ«¿ÕÖÐƯ¸¡×ÅÖÊÁ¿Îªm£¬µçÁ¿ÎªqµÄ´øÕýµçÁ£×Ó£¬ËüÃÇÄܾùÔȵØÎü¸½µ½ABÔ²»¡ÃæÉÏ£¬²¢±»¼ÓËٵ糡´Ó¾²Ö¹¿ªÊ¼¼ÓËÙ£¬²»¼ÆÁ£×Ó¼äµÄÏ໥×÷ÓúÍÆäËüÐÇÇò¶ÔÁ£×ÓµÄÓ°Ï죬²»¿¼Âǹý±ß½çACDBµÄÁ£×ÓÔٴηµ»Ø£®£¨1£©ÇóÁ£×Óµ½´ïOµãʱËٶȵĴóС£»
£¨2£©Èçͼ2Ëùʾ£¬ÔÚPQ£¨ÓëACDBÖغÏÇÒ×ã¹»³¤£©ºÍÊÕ¼¯°åMNÖ®¼äÇøÓò¼ÓÒ»¸öÔÈÇ¿´Å³¡£¬·½Ïò´¹Ö±Ö½ÃæÏòÄÚ£¬Ôò·¢ÏÖ¾ùÔÈÎü¸½µ½ABÔ²»¡ÃæµÄÁ£×Ó¾Oµã½øÈë´Å³¡ºó×î¶àÓÐ$\frac{2}{3}$ÄÜ´òµ½MN°åÉÏ£¬ÇóËù¼Ó´Å¸ÐӦǿ¶ÈµÄ´óС£»
£¨3£©Èçͼ3Ëùʾ£¬ÔÚPQ£¨ÓëACDBÖغÏÇÒ×ã¹»³¤£©ºÍÊÕ¼¯°åMNÖ®¼äÇøÓò¼ÓÒ»¸ö´¹Ö±MNµÄÔÈÇ¿µç³¡£¬µç³¡Ç¿¶ÈµÄ·½ÏòÈçͼËùʾ£¬´óС$E=\frac{ϕ}{4L}$£¬Èô´ÓABÔ²»¡ÃæÊÕ¼¯µ½µÄijÁ£×Ó¾Oµã½øÈëµç³¡ºóµ½´ïÊÕ¼¯°åMNÀëOµã×îÔ¶£¬Çó¸ÃÁ£×Óµ½´ïOµãµÄËٶȵķ½ÏòºÍËüÔÚPQÓëMN¼äÔ˶¯µÄʱ¼ä£®
·ÖÎö £¨1£©´øµçÁ£×ÓÔڵ糡ÖмÓËÙ¹ý³Ì£¬µç³¡Á¦×öÕý¹¦£¬¸ù¾Ý¶¯Äܶ¨ÀíÇóÁ£×Óµ½´ïOµãʱËٶȵĴóС£®
£¨2£©´ÓABÔ²»¡ÃæÊÕ¼¯µ½µÄÁ£×ÓÓÐ$\frac{2}{3}$ÄÜ´òµ½MN°åÉÏ£¬É϶˸պÃÄÜ´òµ½MNÉϵÄÁ£×ÓÓëMNÏàÇУ¬ÈëÉäµÄ·½ÏòÓëOAÖ®¼äµÄ¼Ð½ÇΪ60¡ã£¬»³öÁ£×ÓµÄÔ˶¯¹ì¼££¬µÃµ½¹ì¼£µÄÔ²ÐĽǣ®¸ù¾Ý¼¸ºÎ¹ØϵÇó³ö¹ì¼£°ë¾¶£¬ÔÙÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺÍÂåÂ××ÈÁ¦¹«Ê½½áºÏÇó½â´Å¸ÐӦǿ¶È£®
£¨3£©Á£×ÓÔڵ糡ÖÐÔ˶¯µÄ¹ì¼£ÓëMNÏàÇÐʱ£¬Çе㵽OµãµÄ¾àÀë×îÔ¶£¬ÆäÔ˶¯ÊÇÀàƽÅ×Ô˶¯µÄÄæ¹ý³Ì£®¸ù¾ÝÔ˶¯µÄ·Ö½â·¨£¬ÓÉ·ÖλÒƹ«Ê½ºÍÅ£¶ÙµÚ¶þ¶¨ÂɽáºÏ½â´ð£®
½â´ð ½â£º£¨1£©´øµçÁ£×ÓÔڵ糡ÖмÓËÙʱ£¬µç³¡Á¦×ö¹¦£¬Óɶ¯Äܶ¨ÀíµÃ£º
qU=$\frac{1}{2}m{v}^{2}$-0
¶ø U=2¦Õ-¦Õ=¦Õ
½âµÃ v=$\sqrt{\frac{2q¦Õ}{m}}$
£¨2£©´ÓABÔ²»¡ÃæÊÕ¼¯µ½µÄÁ£×ÓÓÐ$\frac{2}{3}$ÄÜ´òµ½MN°åÉÏ£¬ÔòÉ϶˸պÃÄÜ´òµ½MNÉϵÄÁ£×ÓÓëMNÏàÇУ¬ÈëÉäµÄ·½ÏòÓëOAÖ®¼äµÄ¼Ð½ÇΪ60¡ã£¬Ôڴų¡ÖеÄÔ˶¯¹ì¼£Èçͼ£¬¹ì¼£µÄÔ²ÐÄ½Ç ¦È=60¡ã£®
¸ù¾Ý¼¸ºÎ¹Øϵ¿ÉµÃ£¬Á£×ÓÔ²ÖÜÔ˶¯µÄ¹ì¼£°ë¾¶ R=2L
ÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦µÃ£ºqvB=m$\frac{{v}^{2}}{R}$
ÁªÁ¢½âµÃ B=$\frac{1}{L}$$\sqrt{\frac{m¦Õ}{2q}}$
£¨3£©Èçͼ£¬Á£×ÓÔڵ糡ÖÐÔ˶¯µÄ¹ì¼£ÓëMNÏàÇÐʱ£¬Çе㵽OµãµÄ¾àÀë×îÔ¶£¬ÆäÔ˶¯ÊÇÀàƽÅ×Ô˶¯µÄÄæ¹ý³Ì£®
½¨Á¢Èçͼ×ø±ê£®Ôò
L=$\frac{1}{2}•\frac{qE}{m}{t}^{2}$
¿ÉµÃ t=$\sqrt{\frac{2mL}{qE}}$=2L$\sqrt{\frac{2m}{q¦Õ}}$
vx=$\frac{qE}{m}t$=$\sqrt{\frac{2qEL}{m}}$=$\sqrt{\frac{q¦Õ}{2m}}$
ÉèËÙ¶ÈÓëxÖá·½ÏòµÄ¼Ð½ÇΪ¦Á
Ôò cos¦Á=$\frac{{v}_{x}}{v}$
½âµÃ cos¦Á=$\frac{1}{2}$
¹Ê¦Á=60¡ã
´ð£º
£¨1£©Á£×Óµ½´ïOµãʱËٶȵĴóСÊÇ$\sqrt{\frac{2q¦Õ}{m}}$£®
£¨2£©Ëù¼Ó´Å¸ÐӦǿ¶ÈµÄ´óСÊÇ$\frac{1}{L}$$\sqrt{\frac{m¦Õ}{2q}}$£®
£¨3£©¸ÃÁ£×Óµ½´ïOµãµÄËٶȵķ½ÏòÓëxÖáÕý·½ÏòµÄ¼Ð½ÇΪ60¡ã£¬Ð±ÏòÓÒÉÏ·½£¬ËüÔÚPQÓëMN¼äÔ˶¯µÄʱ¼äÊÇ2L$\sqrt{\frac{2m}{q¦Õ}}$£®
µãÆÀ ±¾Ì⿼²éÁË´øµçÁ£×ÓÔڵ糡ÖеļÓËÙ¡¢´Å³¡ÖеÄƫתºÍµç³¡Æ«×ª£¬¹Ø¼ü×÷³öÁ£×ÓµÄÔ˶¯¹ì¼££¬ÇÉÓÃÄæÏò˼ά´¦Àíµç³¡ÖеçºÉµÄÔ˶¯ÎÊÌ⣬ѡÔñºÏÊʵÄÁ¦Ñ§¹æÂɽøÐÐÇó½â£®
A£® | »¬¶¯±ä×èÆ÷µÄ»¬¶¯Í·P»¬µ½ÁË×î×ó¶Ë | |
B£® | µçÔ´µÄÊä³ö¹¦ÂÊ×î´ó | |
C£® | ¶¨Öµµç×èRÉÏÏûºÄµÄ¹¦ÂÊΪ0.5W | |
D£® | µçÔ´µÄЧÂÊ´ïµ½×î´óÖµ |
A£® | µ±ÎïÌå×÷ÔȼÓËÙÖ±ÏßÔ˶¯Ê±£¬v1£¾v2 | B£® | µ±ÎïÌå×÷ÔȼõËÙÖ±ÏßÔ˶¯Ê±£¬v1£¾v2 | ||
C£® | µ±ÎïÌå×÷ÔÈËÙÖ±ÏßÔ˶¯Ê±£¬v1=v2 | D£® | µ±ÎïÌå×÷ÔÈËÙÖ±ÏßÔ˶¯Ê±£¬v1£¼v2 |
¢Ù°´µç·ÔÀíͼ°Ñͼ2ʵÎïµç·²¹»ÍêÕû£»
¢ÚʵÑéÖвⶨ³öÁËÏÂÁÐÊý¾Ý£º
I/A | 0.10 | 0.15 | 0.17 | 0.23 | 0.25 | 0.30 |
U/V | 1.20 | 1.10 | 1.00 | 0.80 | 1.00 | 0.60 |
¢ÛÓÉI-UͼÏóµÃ³öµç³ØµÄµç¶¯ÊÆΪ1.50V£¬ÄÚ×èΪ0.50¦¸£®