题目内容
【题目】在探究“ 物体质量一定时加速度与力的关系” 的实验中, 某兴趣小组对教材介绍的实验方案进行了优化, 设计了如图所示的实验装置。 其中 M 为带滑轮的小车的质量, m为砂和砂桶的质量( 滑轮质量不计)。
(1).依据优化后实验原理图, 该实验______( 填“需要” 或“ 不需要”) 将带滑轮的长木板右端垫高, 以平衡摩擦力; 实验中______( 填“ 一定要” 或“ 不必要”) 保证砂和砂桶的质量 m 远小于小车的质量 M;
(2).该同学在实验中得到如图(a)所示的一条纸带( 两计数点间还有四个点没有画出), 已知打点计时器采用的是频率为 50Hz 的交流电, 根据纸带可求出小车的加速度为____ m/s2( 结果保留两位有效数字)。
(3).如图(b)所示, 以弹簧测力计的示数 F 为横坐标, 加速度为纵坐标, 画出的 a-F 图象是一条直线, 求得直线的斜率为 k, 则小车的质量为______。
【答案】需要 不必要 0.50
【解析】
(1)只有平衡摩擦力,弹簧秤的拉力的2倍才等于小车的合外力;小车所受拉力可由弹簧测力计测出,实验不需要控制砂和砂桶质量远小于小车质量。
(2)根据匀变速直线运动的推论:△x=at2求出加速度大小。
(3)根据题意,应用牛顿第二定律求出图象的函数表达式,然后分析答题。
(1)依据优化后实验原理图,该实验需要将带滑轮的长木板右端垫高,以平衡摩擦力,这样才能使得弹簧秤的拉力的2倍等于小车的合外力;由于有弹簧测力计测量拉力的大小,则实验中不必要保证砂和砂桶的质量m远小于小车的质量M;
(2) 频率为50Hz,则周期为0.02s,由于两计数点间还有四个点没有画出,相邻计数点的时间间隔为0.1s,由△x=aT2可得:a=m/s2=0.478m/s2。
(3)根据牛顿第二定律:2F=Ma,则a=F,则=k,解得M=。