ÌâÄ¿ÄÚÈÝ
ÔÚÈçͼËùʾ£¬ÒÔOµãΪԲÐÄ£¬ÒÔrΪ°ë¾¶µÄÔ²Óë×ø±êÖá½»µã·Ö±ðΪa¡¢b¡¢c¡¢d£¬¿Õ¼äÓÐÒ»ÓëxÖáÕý·½ÏòÏàͬµÄÔÈÇ¿µç³¡£¬Í¬Ê±£¬ÔÚOµã¹Ì¶¨Ò»¸öµçÁ¿Îª+QµÄµãµçºÉ£®Èç¹û°ÑÒ»¸ö´øµçÁ¿Îª-qµÄ¼ìÑéµçºÉ·ÅÔÚcµã£¬Ç¡ºÃƽºâ£¬Çó£º
£¨1£©ÔÈÇ¿µç³¡µÄ³¡Ç¿´óСEΪ¶àÉÙ£¿
£¨2£©a¡¢dµãµÄºÏ³¡Ç¿´óС¸÷Ϊ¶àÉÙ£¿
£¨3£©Èç¹û°ÑOµãµÄÕýµãµçºÉ+QÒÆ×ߣ¬°ÑµãµçºÉ-q´ÓcµãÑØxÖáÒƵ½aµã£¬Çóµç³¡Á¦×öµÄ¹¦¼°µãc¡¢aÁ½µã¼äµÄµçÊƲ
£¨1£©ÔÈÇ¿µç³¡µÄ³¡Ç¿´óСEΪ¶àÉÙ£¿
£¨2£©a¡¢dµãµÄºÏ³¡Ç¿´óС¸÷Ϊ¶àÉÙ£¿
£¨3£©Èç¹û°ÑOµãµÄÕýµãµçºÉ+QÒÆ×ߣ¬°ÑµãµçºÉ-q´ÓcµãÑØxÖáÒƵ½aµã£¬Çóµç³¡Á¦×öµÄ¹¦¼°µãc¡¢aÁ½µã¼äµÄµçÊƲ
£¨1£©µãµçºÉ-qÔÚcµãÊÜÁ¦Æ½ºâ£¬ÔòÓÐ
k
=qE£¬
½âµÃ£ºE=k
£®
£¨2£©ÔÚaµãµÄºÏ³¡Ç¿´óСΪ
Ea=EQ+E=k
+k
=2k
dµãµÄºÏ³¡Ç¿ÎªµãµçºÉ+QºÍÔÈÇ¿µç³¡µÄʸÁ¿µþ¼Ó£¬ÓÐ
Ed=
=
E=
k
£®
£¨3£©µç³¡Á¦×ö¹¦W=-qE?2r=-2k
£¬
Uca=
=
=
£®
´ð£º£¨1£©ÔÈÇ¿µç³¡µÄ³¡Ç¿´óСEΪk
£»
£¨2£©aµã³¡Ç¿´óСΪ2k
£¬dµãµÄºÏ³¡Ç¿´óСΪ
k
£»
£¨3£©Èç¹û°ÑOµãµÄÕýµãµçºÉ+QÒÆ×ߣ¬°ÑµãµçºÉ-q´ÓcµãÑØxÖáÒƵ½aµã£¬µç³¡Á¦×öµÄ¹¦Îª-2k
£¬
µãc¡¢aÁ½µã¼äµÄµçÊƲîΪ
£®
k
r2 |
½âµÃ£ºE=k
Q |
r2 |
£¨2£©ÔÚaµãµÄºÏ³¡Ç¿´óСΪ
Ea=EQ+E=k
Q |
r2 |
Q |
r2 |
Q |
r2 |
dµãµÄºÏ³¡Ç¿ÎªµãµçºÉ+QºÍÔÈÇ¿µç³¡µÄʸÁ¿µþ¼Ó£¬ÓÐ
Ed=
E2+EQ2 |
2 |
2 |
Q |
r2 |
£¨3£©µç³¡Á¦×ö¹¦W=-qE?2r=-2k
r |
Uca=
Wca |
q |
2qEr |
q |
2kQ |
r |
´ð£º£¨1£©ÔÈÇ¿µç³¡µÄ³¡Ç¿´óСEΪk
Q |
r2 |
£¨2£©aµã³¡Ç¿´óСΪ2k
Q |
r2 |
2 |
Q |
r2 |
£¨3£©Èç¹û°ÑOµãµÄÕýµãµçºÉ+QÒÆ×ߣ¬°ÑµãµçºÉ-q´ÓcµãÑØxÖáÒƵ½aµã£¬µç³¡Á¦×öµÄ¹¦Îª-2k
r |
µãc¡¢aÁ½µã¼äµÄµçÊƲîΪ
2kQ |
r |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿