ÌâÄ¿ÄÚÈÝ
12£®ÔÚ×ø±êÔµãµÄ²¨Ô´²úÉúÒ»ÁÐÑØxÖáÕý·½Ïò´«²¥µÄ¼òгºá²¨£¬²¨ËÙv=200m/s£¬ÒÑÖªt=0ʱ¿Ì£¬²¨¸ÕºÃ´«²¥µ½x=40m´¦£¬ÈçͼËùʾ£®ÔòÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©A£® | ²¨Ô´¿ªÊ¼Õñ¶¯Ê±·½ÏòÑØyÖḺ·½Ïò | |
B£® | t=0.15ʱ£¬x=40mµÄÖʵãλÓÚƽºâλÖÃÇÒÏòyÖáÕýÏòÔ˶¯ | |
C£® | t=0.15ʱ£¬x=40mµÄÖʵãλÓÚƽºâλÖÃÇÒÏòyÖḺÏòÔ˶¯ | |
D£® | t=0.15ʱ£¬x=60mµÄÖʵã¸ÕºÃµ½´ï²¨·å |
·ÖÎö ¼òг²¨´«²¥¹ý³ÌÖУ¬½éÖÊÖи÷ÖʵãµÄÆðÕñ·½ÏòÓ벨ԴµÄÆðÕñ·½ÏòÏàͬ£¬ÓÉͼÖÐx=40m´¦ÖʵãµÄÕñ¶¯·½Ïò¶Á³ö¸÷ÖʵãµÄÆðÕñ·½Ïò£¬¼´¿ÉÅжϳö²¨Ô´¿ªÊ¼Õñ¶¯Ê±µÄ·½Ïò£®¶Á³ö²¨³¤£¬Çó³öÖÜÆÚ£¬¸ù¾Ýʱ¼äÓëÖÜÆڵĹØϵ£¬Çó³öÖʵãÔ˶¯Çé¿ö£®
½â´ð ½â£ºA¡¢Óɲ¨ÏòÓÒ´«²¥£¬¿ÉÖª´Ëʱx=40m´¦µÄÖʵãÑØyÖḺ·½ÏòÔ˶¯£¬Ôò²¨Ô´¿ªÊ¼Õñ¶¯Ê±·½ÏòÑØyÖḺ·½Ïò£¬¹ÊAÕýÈ·£»
B¡¢C¡¢ÒòT=$\frac{¦Ë}{v}=0.1$s£¬t=0.15s=$\frac{3}{2}T$£¬¿ÉÖª´Ëʱx=40m´¦µÄÖʵãλÓÚƽºâλÖÃÇÒÏòyÖáÕýÏòÔ˶¯£¬¹ÊBÕýÈ·£¬C´íÎó£»
D¡¢t=0.15sʱ£¬²¨ÏòÇ°´«²¥µÄ¾àÀë¡÷x=v¡÷t=30m£¬x=70m´¦µÄÖʵ㿪ʼÏòyÖḺ·½ÏòÆðÕñ£¬´Ëʱx=60m´¦µÄÖʵãÉÐδµ½´ï²¨·å£¬¹ÊD´íÎó£®
¹ÊÑ¡£ºAB
µãÆÀ ±¾ÌâҪץס¼òг²¨Ò»¸ö»ù±¾Ìص㣺½éÖÊÖи÷ÖʵãµÄÆðÕñ·½Ïò¶¼Ó벨ԴµÄÆðÕñ·½ÏòÏàͬ£¬½øÐзÖÎö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
1£®Ò»Îï¿é·ÅÔÚˮƽµØÃæÉÏ£¬Êܵ½Ò»Ë®Æ½ÀÁ¦FµÄ×÷Óã¬FµÄ´óСÓëʱ¼ätµÄ¹ØϵÈçͼ¼×Ëùʾ£»Îï¿éÔ˶¯µÄËÙ¶Èv-tͼÏóÈçͼÒÒËùʾ£¬6sºóµÄËÙ¶ÈͼÏóûÓл³ö£¬gÈ¡10m/s2£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£® | Îï¿é»¬¶¯Ê±ÊܵÄĦ²ÁÁ¦´óСÊÇ6N | |
B£® | Îï¿éµÄÖÊÁ¿Îª2kg | |
C£® | Îï¿éÔÚ6¡«9sÄڵļÓËٶȴóСÊÇ1m/s2 | |
D£® | Îï¿éÔÚ9sÄÚµÄƽ¾ùËٶȴóСÊÇ4m/s |
7£®ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£® | Ë®ÃæÉϵÄĤÔÚÑô¹âÕÕÉäÏ»á³ÊÏÖ²ÊÉ«£¬ÕâÊÇÓÉÓÚ¹âµÄ¸ÉÉæÔì³ÉµÄÉ«É¢ÏÖÏó | |
B£® | Óü¤¹âÒýÆðºË¾Û±äÊÇÀûÓü¤¹â¾ßÓÐÁÁ¶È¸ß¡¢ÄÜÁ¿´óµÄÌصã | |
C£® | Ïà¶ÔÂÛÈÏΪʱ¼äºÍ¿Õ¼äÓëÎïÖʵÄÔ˶¯×´Ì¬ÓÐ¹Ø | |
D£® | Ôڲⶨµ¥°ÚÖÜÆÚʱ£¬Îª¼õСʵÑéÎó²î£¬×îºÃÔÚСÇò¾¹ý×î´óλÒÆ´¦Ê±¿ªÊ¼¼Æʱ |
2£®Ò»´øÓÐƹÅÒÇò·¢Éä»úµÄƹÅÒÇǫ̀ÈçͼËùʾ£®Ë®Æ½Ì¨ÃæµÄ³¤ºÍ¿í·Ö±ðΪL1ºÍL2£¬ÖмäÇòÍø¸ß¶ÈΪh£®·¢Éä»ú°²×°ÓŲ́Ãæ×ó²à±ßÔµµÄÖе㣬ÄÜÒÔ²»Í¬ËÙÂÊÏòÓҲ಻ͬ·½Ïòˮƽ·¢ÉäƹÅÒÇò£¬·¢Éäµã¾ą̀Ãæ¸ß¶ÈΪ3h£®²»¼Æ¿ÕÆøµÄ×÷Óã¬ÖØÁ¦¼ÓËٶȴóСΪg£®ÈôƹÅÒÇòµÄ·¢ÉäËÙÂÊvÔÚij·¶Î§ÄÚ£¬Í¨¹ýÑ¡ÔñºÏÊʵķ½Ïò£¬¾ÍÄÜʹƹÅÒÇòÂäµ½ÇòÍøÓÒ²ą̀ÃæÉÏ£¬ÔòvµÄ×î´óÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£® | $\frac{L_1}{2}\sqrt{\frac{g}{6h}}£¼v£¼{L_1}\sqrt{\frac{g}{6h}}$ | B£® | $\frac{L_1}{4}\sqrt{\frac{g}{h}}£¼v£¼{L_1}\sqrt{\frac{£¨4L_1^2+L_2^2£©g}{6h}}$ | ||
C£® | $\frac{L_1}{2}\sqrt{\frac{g}{6h}}£¼v£¼\frac{L_1}{2}\sqrt{\frac{£¨4L_1^2+L_2^2£©g}{6h}}$ | D£® | $\frac{L_1}{4}\sqrt{\frac{g}{h}}£¼v£¼\frac{1}{2}\sqrt{\frac{£¨4L_1^2+L_2^2£©g}{6h}}$ |