ÌâÄ¿ÄÚÈÝ
£¨2013?Äϲý¶þÄ££©ÈçͼËùʾ£¬OP1Q1ÓëOP2Q2ÊÇλÓÚͬһˮƽÃæÉϵÄÁ½¸ù½ðÊôµ¼¹ì£¬´¦ÔÚÑØÊúÖ±·½ÏòµÄÔÈÇ¿´Å³¡ÖУ¬´Å¸ÐӦǿ¶ÈΪB£¬³¤¶ÈÏàµÈµÄµ¼¹ìOP1¶ÎÓëOP2¶ÎÏ໥´¹Ö±£¬½»ÓÚOµã£®µ¼¹ìµÄP1Q1ÓëP2Q2¶ÎÏ໥ƽÐУ¬Ïà¾àΪ2b£®Ò»¸ùÖÊÁ¿ÎªmµÄ½ðÊôϸ¸Ë£¬ÔÚt=0sʱ´ÓOµã³ö·¢£¬ÔÚÍâÁ¦×÷ÓÃÏÂÒԺ㶨µÄËÙ¶ÈvÑص¼¹ìÏòÓÒ»¬¶¯£®ÔÚ»¬¶¯µÄ¹ý³ÌÖУ¬¸ËËٶȵķ½ÏòʼÖÕ±£³ÖÓëµ¼¹ìµÄƽÐжÎÏàƽÐУ¬ÇÒÓëOP1³É45¡ã¼Ð½Ç£¬¸ËÓëµ¼¹ìÓÐÁ¼ºÃµÄ½Ó´¥£®¼Ù¶¨µ¼¹ìÓë½ðÊô¸Ë¶¼Óеç×裬ÇÒÿµ¥Î»³¤¶ÈµÄµç×趼ÊÇr£®²»¼Æ½ðÊôϸ¸ËÓë¹ìµÀÖ®¼äµÄĦ²Á£®
£¨1£©½ðÊô¸ËÔÚÕý½»µÄOP1¡¢OP2µ¼¹ìÉÏ»¬¶¯Ê±£¬Í¨¹ý½ðÊô¸ËÖеĵçÁ÷¶à´ó£¿
£¨2£©´Ó¿ªÊ¼Ô˶¯µ½t=
¹ý³ÌÖУ¬ÍâÁ¦Ò»¹²×öÁ˶àÉٵŦ£¿
£¨3£©Èô¿ØÖÆÍâÁ¦£¬Ê¹½ðÊô¸Ë´Ó¾²Ö¹¿ªÊ¼×÷ÔȼÓËÙÖ±ÏßÔ˶¯£¬¼ÓËٶȴóСΪa£¬ÊÔд³öÍâÁ¦Ëæʱ¼ä±ä»¯µÄ¹æÂÉ£®
£¨1£©½ðÊô¸ËÔÚÕý½»µÄOP1¡¢OP2µ¼¹ìÉÏ»¬¶¯Ê±£¬Í¨¹ý½ðÊô¸ËÖеĵçÁ÷¶à´ó£¿
£¨2£©´Ó¿ªÊ¼Ô˶¯µ½t=
b | v |
£¨3£©Èô¿ØÖÆÍâÁ¦£¬Ê¹½ðÊô¸Ë´Ó¾²Ö¹¿ªÊ¼×÷ÔȼÓËÙÖ±ÏßÔ˶¯£¬¼ÓËٶȴóСΪa£¬ÊÔд³öÍâÁ¦Ëæʱ¼ä±ä»¯µÄ¹æÂÉ£®
·ÖÎö£º£¨1£©¸ù¾ÝÇиîÇó³ö¸ÐÓ¦µç¶¯ÊƵıí´ïʽ£¬Í¨¹ý»Ø·µÄ³¤¶ÈÇó³ö»Ø·µÄµç×裬ÔÙͨ¹ýÅ·Ä·¶¨ÂÉÇó³ö¸ÐÓ¦µ½µçÁ÷µÄ´óС£®
£¨2£©´Ó¿ªÊ¼Ô˶¯µ½t=
¹ý³ÌÖУ¬ÒòΪµ¼Ìå°ôµÄÓÐЧ³¤¶È¾ùÔÈÔö¼Ó£¬µçÁ÷²»±ä£¬Ôò°²ÅàÁ¦¾ùÔÈÔö´ó£¬Çó³öÕâ¶Î¹ý³ÌÖеÄƽ¾ù°²ÅàÁ¦£¬×¥×¡°²ÅàÁ¦×öµÄ¹¦µÈÓÚÍâÁ¦×öµÄ¹¦Çó³öÍâÁ¦×ö¹¦µÄ´óС£®
£¨3£©·ÖÁ½ÖÖÇé¿öÌÖÂÛ£¬Ò»ÖÖÊÇÔÚλÒÆ0-bÄÚ£¬Ò»ÖÖÊÇλÒÆ´óÓÚbºó£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½£¬½áºÏÇиî²úÉúµÄ¸ÐÓ¦µç¶¯Êƺͱպϵç·ŷķ¶¨ÂÉÇó³öÍâÁ¦Ëæʱ¼ä±ä»¯µÄ¹æÂÉ£®
£¨2£©´Ó¿ªÊ¼Ô˶¯µ½t=
b |
v |
£¨3£©·ÖÁ½ÖÖÇé¿öÌÖÂÛ£¬Ò»ÖÖÊÇÔÚλÒÆ0-bÄÚ£¬Ò»ÖÖÊÇλÒÆ´óÓÚbºó£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½£¬½áºÏÇиî²úÉúµÄ¸ÐÓ¦µç¶¯Êƺͱպϵç·ŷķ¶¨ÂÉÇó³öÍâÁ¦Ëæʱ¼ä±ä»¯µÄ¹æÂÉ£®
½â´ð£º½â£º£¨1£©Çиî²úÉúµÄ¸ÐÓ¦µç¶¯ÊÆE=BLV£¬»Ø·Öеĵç×èR=£¨2
vt+2vt£©r£¬
¸ù¾ÝÅ·Ä·¶¨Âɵãº
I1=
=
=
£¨2£©¸ù¾Ý¶¯Äܶ¨ÀíµÃ£ºWF-WA=0
WF=WA=
?b=
B
2b?b=
£®
£¨3£©·ÖÁ½¶ÎÌÖÂÛ£º
¢Ù0¡Üt¡Ü
S=
at2£¬V=at£¬I1=
£®
F1-BI1?2S=ma
F1=ma+
£®
¢Út£¾
R=[2
b+2£¨x-b£©+2b]r=£¨2
b+at2£©r
I2=
=
F2=ma+
´ð£º£¨1£©½ðÊô¸ËÔÚÕý½»µÄOP1¡¢OP2µ¼¹ìÉÏ»¬¶¯Ê±£¬Í¨¹ý½ðÊô¸ËÖеĵçÁ÷Ϊ
£®
£¨2£©´Ó¿ªÊ¼Ô˶¯µ½t=
¹ý³ÌÖУ¬ÍâÁ¦Ò»¹²×öÁË
µÄ¹¦£®
£¨3£©µ±0¡Üt¡Ü
£¬F1=ma+
£»µ±t£¾
ʱ£¬F2=ma+
£®
2 |
¸ù¾ÝÅ·Ä·¶¨Âɵãº
I1=
BLv |
R |
B?2Vt?V | ||
(2
|
Bv | ||
(
|
£¨2£©¸ù¾Ý¶¯Äܶ¨ÀíµÃ£ºWF-WA=0
WF=WA=
0+FAmax |
2 |
1 |
2 |
Bv | ||
(
|
B2vb2 | ||
(
|
£¨3£©·ÖÁ½¶ÎÌÖÂÛ£º
¢Ù0¡Üt¡Ü
|
S=
1 |
2 |
Bat | ||
(
|
F1-BI1?2S=ma
F1=ma+
B2a2t3 | ||
(
|
¢Út£¾
|
R=[2
2 |
2 |
I2=
B?2b?at |
R |
2abBt | ||
(2
|
F2=ma+
4ab2B2t | ||
(2
|
´ð£º£¨1£©½ðÊô¸ËÔÚÕý½»µÄOP1¡¢OP2µ¼¹ìÉÏ»¬¶¯Ê±£¬Í¨¹ý½ðÊô¸ËÖеĵçÁ÷Ϊ
Bv | ||
(
|
£¨2£©´Ó¿ªÊ¼Ô˶¯µ½t=
b |
v |
B2vb2 | ||
(
|
£¨3£©µ±0¡Üt¡Ü
|
B2a2t3 | ||
(
|
|
4ab2B2t | ||
(2
|
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÇиî²úÉúµÄ¸ÐÓ¦µç¶¯ÊÆ¡¢±ÕºÏµç·ŷķ¶¨ÂÉ¡¢Å£¶ÙµÚ¶þ¶¨ÂɵÈ֪ʶµã£¬×ÛºÏÐÔ½ÏÇ¿£¬×¢ÒâÐèÇø±ðµ¼Ìå°ôλÒÆ0-bÄÚÒÔ¼°Î»ÒÆ´óÓÚbÁ½ÖÖÇé¿ö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿