ÌâÄ¿ÄÚÈÝ
4£®Ãñ×åÔ˶¯»áÉÏÓÐÒ»ÆïÉäÏîÄ¿ÈçͼËùʾ£¬Ô˶¯Ô±ÆïÔÚ±¼ÅܵÄÂíÉÏ£¬Í乷żýÉä»÷²àÏòµÄ¹Ì¶¨Ä¿±ê£®¼ÙÉèÔ˶¯Ô±ÆïÂí±¼³ÛµÄËÙ¶ÈΪv1£¬Ô˶¯Ô±¾²Ö¹Ê±Éä³öµÄ¹¼ýËÙ¶ÈΪv2£¬ÅܵÀÀë¹Ì¶¨Ä¿±êµÄ×î½ü¾àÀëΪd£®ÒªÏëÃüÖÐÄ¿±êÇÒÉä³öµÄ¼ýÔÚ¿ÕÖзÉÐÐʱ¼ä×î¶Ì£¬Ôò£¨¡¡¡¡£©A£® | Ô˶¯Ô±·Å¼ý´¦ÀëÄ¿±êµÄ¾àÀëΪ$\frac{d{v}_{2}}{{v}_{1}}$ | |
B£® | Ô˶¯Ô±·Å¼ý´¦ÀëÄ¿±êµÄ¾àÀëΪ$\frac{d\sqrt{{{v}_{1}}^{2}+{{v}_{2}}^{2}}}{{v}_{2}}$ | |
C£® | ¼ýÉäµ½¹Ì¶¨Ä¿±êµÄ×î¶Ìʱ¼äΪ$\frac{d}{v_1}$ | |
D£® | ¼ýÉäµ½¹Ì¶¨Ä¿±êµÄ×î¶Ìʱ¼äΪ$\frac{d}{\sqrt{{{v}_{2}}^{2}-{{v}_{1}}^{2}}}$ |
·ÖÎö Ô˶¯Ô±·Å³öµÄ¼ý¼È²ÎÓëÁËÑØÂíÔËÐз½ÏòÉϵÄÔÈËÙÖ±ÏßÔ˶¯£¬ÓÖ²ÎÓëÁË´¹Ö±ÓÚÂíÔËÐз½ÏòÉϵÄÔÈËÙÖ±ÏßÔ˶¯£¬µ±·Å³öµÄ¼ý´¹Ö±ÓÚÂíÔËÐз½Ïò·¢É䣬´ËʱÔËÐÐʱ¼ä×î¶Ì£¬¸ù¾Ýt=$\frac{d}{{v}_{2}}$ Çó³ö×î¶Ìʱ¼ä£¬¸ù¾Ý·ÖÔ˶¯ºÍºÏÔ˶¯¾ßÓеÈʱÐÔ£¬Çó³ö¼ýÔÚÂíÔËÐз½ÏòÉϵľàÀ룬¸ù¾ÝÔ˶¯µÄºÏ³É£¬Çó³öÔ˶¯Ô±·Å¼ý´¦ÀëÄ¿±êµÄ¾àÀ룮
½â´ð ½â£ºAB¡¢×î¶Ìʱ¼äΪt=$\frac{d}{{v}_{2}}$£¬Ôò¼ýÔÚÑØÂíÔËÐз½ÏòÉϵÄλÒÆΪx=v1t=$\frac{{v}_{1}d}{{v}_{2}}$£¬ËùÒԷżý´¦¾àÀëÄ¿±êµÄ¾àÀëΪs=$\sqrt{{d}^{2}+£¨\frac{{v}_{1}d}{{v}_{2}}£©^{2}}$=$\frac{d\sqrt{{{v}_{1}}^{2}+{{v}_{2}}^{2}}}{{v}_{2}}$£®¹ÊA´íÎó¡¢BÕýÈ·£®
CD¡¢µ±·Å³öµÄ¼ý´¹Ö±ÓÚÂíÔËÐз½Ïò·¢É䣬´ËʱÔËÐÐʱ¼ä×î¶Ì£¬ËùÒÔ×î¶Ìʱ¼ät=$\frac{d}{{v}_{2}}$£®¹ÊCD´íÎó£®
¹ÊÑ¡£ºB£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀ¼ý²ÎÓëÁËÑØÂíÔËÐз½ÏòÉϵÄÔÈËÙÖ±ÏßÔ˶¯ºÍ´¹Ö±ÓÚÂíÔËÐз½ÏòÉϵÄÔÈËÙÖ±ÏßÔ˶¯£¬ÖªµÀ·ÖÔ˶¯ÓëºÏÔ˶¯¾ßÓеÈʱÐÔ£®
A£® | µçÁ÷±íµÄʾÊý²»±ä | B£® | µçÁ÷±íµÄʾÊý¼õС | ||
C£® | µçÈÝÆ÷µÄ´øµçÁ¿¼õС | D£® | µçÈÝÆ÷µÄ´øµçÁ¿Ôö´ó |
A£® | ÖÐÑëÌõÎÆ¿í¶øÁÁ£¬Á½²àÌõÎÆÕ¶ø°µ | |
B£® | ÓÃ×Ϲâ×÷¹âԴʱ¹Û²ìµ½µÄÌõÎƱÈÓúì¹â×÷¹âԴʱ¹Û²ìµ½µÄÌõÎÆ¿í | |
C£® | Óð׹â×÷¹âԴʱ£¬ÖÐÑë³ÊÏÖ°×É«ÌõÎÆ£¬Á½²àΪ²ÊÉ«ÌõÎÆ | |
D£® | Èô½«ÏÁ·ì¿í¶ÈÓÉ0.5mmËõСµ½0.2mm£¬ÌõÎƼä¾à±ä¿í£¬ÁÁ¶È±ä°µ |
A£® | W1£¾W2 P1£¾P2 | B£® | W1£¾W2 P1=P2 | C£® | W1=W2 P1£¼P2 | D£® | W1=W2 P1=P2 |
A£® | µ±´øµçÌåµÄ´óС¶Ô¾²µç×÷ÓÃÁ¦µÄÓ°ÏìÄܹ»ºöÂÔ²»¼Æʱ¿ÉÊÓΪµãµçºÉ | |
B£® | ÒòΪµç×ÓºÜС£¬ËùÒÔµç×ÓÔÚÈκÎʱºò¶¼¿ÉÒÔ¿´×÷µãµçºÉ | |
C£® | Èô´øµçÇòÌå»ý½Ï´ó£¬ÈκÎʱºò¶¼²»ÄÜ¿´×÷µãµçºÉ | |
D£® | µãµçºÉ¾ÍÊÇÖ»ÓÐÖÊÁ¿¶øûÓдóСµÄµã |
x1/cm | x2/cm | x3/cm | x4/cm |
8.20 | 9.30 | 10.40 | 11.50 |
£¨2£©Í¼ÖÐСÇòÔÚλÖÃ×îµÍµÄÏñ´¦µÄËÙ¶ÈΪ1.32m/s£¨Á½¸ö½â¾ù±£ÁôÈý¸öÓÐЧÊý×Ö£©£®