题目内容
一质量为m,带电量为+q的小球从距地面高h处以一定的初速度水平抛出。在距抛出点水平距离为L处,有一根管口比小球直径略大的竖直细管,管的上口距地面。为使小球刚好能无碰撞地进入管子,可在管口上方的整个区域里加一个场强方向水平向左的匀强电场。如图:求:[1]小球的初速度v0;
[2]电场强度E的大小;
[3]小球落地时的动能。
答案:见详解
解析:
提示:
解析:
小球在竖直方向做自由落体运动,水平方向在电场力作用下应做减速运动。到达管口上方时,水平速度应为零。小球运动至管口的时间由竖直方向的运动决定:
① 水平方向: v0-at = 0 ② ③ a = Eq / m ④
由动能定理: E=mgh
|
提示:
本题是一道有关电场,牛顿运动定律的一道综合题目。 |
练习册系列答案
相关题目
如图所示,L为竖直、固定的光滑绝缘杆,杆上o点套有一质量为m、带电量为-q的小环,在杆的左侧固定一电荷量为+Q的点电荷,杆上a、b两点到+Q的距离相等,oa之间距离为h1,ab之间距离为h2,使小环从图示位置的o点由静止释放后,通过a点的速率为
.则下列说法正确的是( )
3gh1 |
A、小环通过a、b两点时的速度大小相等 | ||
B、小环通过b点的速率为
| ||
C、小环在oa之间的速度不断增大 | ||
D、小环从o到b,电场力做的功可能为零 |