ÌâÄ¿ÄÚÈÝ
9£®Èçͼ¼×Ëùʾ£¬±Á½ôµÄˮƽ´«ËÍ´øʼÖÕÒԺ㶨ËÙÂÊv1ÔËÐУ¬³õËٶȴóСΪv2µÄú¿é´ÓÓë´«ËÍ´øµÈ¸ßµÄ¹â»¬Ë®Æ½µØÃæÉϵÄA´¦»¬ÉÏ´«ËÍ´ø£®ÈôÒÔµØÃæΪ²Î¿¼Ïµ£¬´Óú¿é»¬ÉÏ´«ËÍ´ø¿ªÊ¼¼Æʱ£¬Ãº¿éÔÚ´«ËÍ´øÉÏÔ˶¯µÄËÙ¶È-ʱ¼äͼÏóÈçͼÒÒËùʾ£¬È¡g=10m/s2£¬Çó£¨1£©Ãº¿éÓë´«ËÍ´ø¼äµÄ¶¯Ä¦²ÁÒòÊý£»
£¨2£©Ãº¿éÔÚ´«ËÍ´øÉÏÔ˶¯µÄʱ¼ä£»
£¨3£©Õû¸ö¹ý³ÌÖÐú¿éÔÚ´«ËÍ´øÉϵĻ®ºÛ³¤¶È£®
·ÖÎö £¨1£©ÓÉv-tͼ£¬Çó³öú¿é×öÔȱäËÙÔ˶¯µÄ¼ÓËٶȣ¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¶¯Ä¦²ÁÒòÊý£»
£¨2£©ÓÉͼ֪£¬×îºóÔÈËÙÔ˶¯Ê±ºÍ´«ËÍ´øËÙ¶ÈÏàµÈ£¬¶Á³öú¿éµÄ³õËٶȺʹ«ËÍ´øµÄËٶȣ¬ÓÉλÒƹ«Ê½·Ö±ðÇó³öÈý¶ÎλÒÆ£¬°ÑÈý¸öʱ¼äÏà¼ÓµÃÔÚ´«ËÍ´øÉÏÔ˶¯µÄʱ¼ä£»
£¨3£©Õâ¶Îʱ¼ä·Ö±ð¼ÆËã¸÷×ÔµÄ×ÜλÒÆ×÷²î£¬µÃ³öÏà¶ÔλÒÆ£¬¼´Õû¸ö¹ý³ÌÖÐú¿éÔÚ´«ËÍ´øÉϵĻ®ºÛ³¤¶È£®
½â´ð ½â£º£¨1£©ÓÉËÙ¶È-ʱ¼äͼÏó£¬Ãº¿éÔȱäËÙÔ˶¯µÄ¼ÓËٶȣº$a=\frac{¡÷v}{¡÷t}=\frac{3}{3}=1m/{s}^{2}$
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ£º¦Ìmg=ma
ú¿éÓë´«ËÍ´ø¼äµÄ¶¯Ä¦²ÁÒòÊý£º$¦Ì=\frac{a}{g}=0.1$
$¦Ì=\frac{a}{g}=\frac{1}{10}=0.1$
£¨2£©ÓÉËÙ¶È-ʱ¼äͼÏ󣬴«ËÍ´øËٶȴóСv1=1m/s£¬Ãº¿é³õËٶȴóСv2=3m/s£¬Ãº¿éÔÚ´«ËÍ´øÉÏ»¬¶¯t1=4sÓë´«ËÍ´øÏà¶Ô¾²Ö¹£®
Ç°3sÄÚú¿éµÄλÒÆ£º${s}_{1}=\frac{{v}_{2}}{2}t=\frac{3}{2}¡Á3=4.5m$£¬·½ÏòÏò×ó
ºó1sÄÚú¿éµÄλÒÆ£º${s}_{2}=\frac{{v}_{1}}{2}t¡ä=\frac{1}{2}¡Á1=0.5m$£¬·½ÏòÏòÓÒ
4sÄÚú¿éµÄλÒÆ£ºs=s1-s2=4.5-0.5=4m£¬·½ÏòÏò×ó
ú¿é½Ó×ÅÔÚ´«ËÍ´øÉÏÏòÓÒÔÈËÙÔ˶¯£¬Ê±¼ä£º${t}_{2}=\frac{s}{{v}_{1}}=\frac{4}{1}=4s$
¹Êú¿éÔÚ´«ËÍ´øÉÏÔ˶¯µÄʱ¼ä£ºt=t1+t2=4+4=8s
£¨3£©Ãº¿éÔÚ´«ËÍ´øÉÏ»¬¶¯µÄ4sÄÚ£¬Æ¤´øµÄλÒÆ£ºs¡ä=v1t1=1¡Á4=4m£¬·½ÏòÏòÓÒ£»Ãº¿éµÄλÒÆ£ºs=4m£¬·½ÏòÏò×ó£ºËùÒÔ£¬Õû¸ö¹ý³ÌÖÐú¿éÔÚ´«ËÍ´øÉϵĻ®ºÛ³¤¶È£º¡÷s¡ä=s¡ä+s=4+4=8m
´ð£º£¨1£©Ãº¿éÓë´«ËÍ´ø¼äµÄ¶¯Ä¦²ÁÒòÊýΪ0.1£»
£¨2£©Ãº¿éÔÚ´«ËÍ´øÉÏÔ˶¯µÄʱ¼äΪ8s£»
£¨3£©Õû¸ö¹ý³ÌÖÐú¿éÔÚ´«ËÍ´øÉϵĻ®ºÛ³¤¶ÈΪ8m£®
µãÆÀ ±¾Ìâ¹Ø¼ü´ÓͼÏóµÃ³öÎïÌåµÄÔ˶¯¹æÂɺʹ«ËÍ´øµÄËٶȴóС£¬È»ºó·Ö¹ý³Ì¶Ôľ¿éÊÜÁ¦·ÖÎö£®¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½Çó½â£®
A£® | $\frac{{{m_2}-{m_1}}}{m_1}$ | B£® | $\frac{{{m_2}-{m_1}}}{m_2}$ | C£® | $\frac{{{m_2}-{m_1}}}{{{m_2}+{m_1}}}$ | D£® | $\frac{m_2}{{{m_2}+{m_1}}}$ |
A£® | µç´Å²¨ÊÇÒ»ÖֺᲨ | |
B£® | ¿Õ¼äÓб仯µÄµç³¡£¨»ò´Å³¡£©´æÔÚ£¬Ò»¶¨ÄÜÐγɵç´Å²¨ | |
C£® | ΢²¨µÄƵÂʸßÓڿɼû¹â | |
D£® | µ±ÎïÌåÒÔ½Ó½ü¹âËÙµÄËÙ¶ÈÔ˶¯Ê±£¬ÎïÌåµÄÖÊÁ¿±ä»¯²ÅÃ÷ÏÔ£¬Òò´ËÅ£¶ÙÔ˶¯¶¨Âɲ»½öÊÊÓÃÓÚµÍËÙÔ˶¯£¬¶øÇÒÊÊÓÃÓÚ¸ßËÙÔ˶¯ |