题目内容

[物理--选修3-5]
(1)C在β衰变中常伴有一种称为“中微子”的粒子放出.中微子的性质十分特别,因此在实验中很难探测.1953年,莱尼斯和柯文建造了一个由大水槽和探测器组成的实验系统,利用中微子与水中
 
1
1
H
的核反应,间接地证实了中微子的存在.
a.中微子与水中的
 
1
1
H
发生核反应,产生中子(
 
0
1
n)和正电子(
 
0
+1
e
),即中微子+
 
1
1
H
 
1
0
n
+
 
0
+1
e
可以判定,中微子的质量数和电荷数分别是
A
A
.(填写选项前的字母)
(A)0和0         (B)0和1        (C)1和 0       (D)1和1
b.上述核反应产生的正电子与水中的电子相遇,可以转变为两个光子(r),即
 
0
+1
e
+
 
0
-1
e
→2r,已知正电子和电子的质量都为9.1×10-31㎏,反应中产生的每个光子的能量约为
8.2×10-14
8.2×10-14
J.
(2)如图所示,在光滑的水平面上有两块并列放置的木块A与B,已知A的质量是500g,B的质量是300g,有一质量为80g的小铜块C(可视为质点)以25m/s的水平初速度开始在A的表面滑动.铜块最后停在B上,B与C一起以2.5m/s的速度共同前进.求:
①木块A最后的速度vA′;
②小铜块C离开A时,小铜块C的速度vC
分析:(1)根据电荷数守恒、质量数守恒判断中微子的质量数和电荷数.
根据质量亏损,通过爱因斯坦质能方程求出每个光子的能量.正电子与电子相遇不可能只转变为一个光子,因为要遵循动量守恒.
(2)A、B、C三个木块组成的系统所受合外力为零,总动量守恒,由动量守恒定律研究整个过程,求解木块A的最终速度;
根据运量守恒定律研究C在A上滑行的过程,求出滑块C离开A时的速度.
解答:解:(1)a、根据质量数守恒、电荷数守恒,知中微子的质量数和电荷数为0和0.故A正确,B、C、D错误.
故选A.
b、根据爱因斯坦质能方程知,△E=△mc2=2E,解得光子能量E=
mC2
2
=8.2×10-14J.
(2)C在A上滑动时,选A、B、C作为一个系统,其总动量守恒.则 mCv0=mCvC′+(mA+mB)vA′①
C滑到B上后A做匀速运动,再选B、C作为一个系统,其总动量也守恒,则
mCvC′+mBvA′=(mB+mC)vBC                                                                                          ②
也可以研究C在A、B上面滑动的全过程,在整个过程中,A、B、C组成系统的总动量守恒,则
mCv0=mAvA′+(mB+mC)vBC                                                                                       ③
把上述方程①②③式中的任意两个联立求解即可得到vA′=2.1 m/s,vC′=4 m/s.
故答案为:(1)A,8.2×10-14J.
(2)①木块A最后的速度是2.1 m/s;
②小铜块C离开A时,小铜块C的速度是4 m/s.
点评:解决本题的关键知道核反应方程中电荷数守恒、质量数守恒,掌握爱因斯坦质能方程,第2题是木块在两个木板上滑动的问题,分析过程,选择研究对象,根据动量守恒定律研究速度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网