题目内容
【题目】如图甲所示,竖直挡板MN左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E=40N/C,磁感应强度B随时间t变化的关系图象如图乙所示(磁场垂直纸面向里为正方向)。t=0时刻,一质量m=8×10﹣4kg、电荷量q=+2×10﹣4C的微粒在O点具有竖直向下的速度v=0.12m/s,O’是挡板MN上一点,直线OO'与挡板MN垂直,取重力加速度g=10m/s2.求:
(1)若微粒的运动时间大于一个B变化的周期,在图上画出(0﹣20π)s内微粒的运动轨迹
(2)微粒再次经过直线OO'时与O点的距离;
(3)微粒在运动过程中离开直线OO’的最大高度;
(4)水平移动挡板使微粒能垂直射到挡板上,挡板与O点间的距离应满足的条件。
【答案】(1);(2)1.2m;(3)2.48m;(4)L=(1.2n+0.6)m(n=0,1,2…)。
【解析】
(1)微粒所受的重力:G=mg=8×10﹣3N
电场力大小 F=Eq=8×10﹣3N
因此重力与电场力平衡,微粒先在洛伦兹力作用下做匀速圆周运动,由牛顿第二定律得:
qvB=m
代入数据解得:R=0.6m,
周期:T=
代入数据解得:T=10πs,
则微粒在5πs内转过半个圆周,如图所示。
在5πs﹣10πs微粒做匀速直线运动,接着再转过半个圆周,用时5πs,再匀速运动5πs,所以(0﹣20π)s内微粒的运动轨迹如图。
(2)微粒在5πs内转过半个圆周,再次经直线OO′时与O点的距离 l=2R=1.2m.
(3)微粒运动半周后向上匀速运动,运动的时间为t=5πs,轨迹如图所示,位移大小 s=vt=0.6πm=1.88m
因此微粒离开直线OO′的最大高度h=s+R=2.48m
(4)若微粒能垂直射到挡板上,由图象可知,挡板MN与O点间的距离应满足:
L=(1.2n+0.6)m(n=0,1,2…)