题目内容

(12分)如图,在倾角为θ=30o的光滑斜面的底端有一个固定挡板D,小物体C靠在挡板D上,小物体B与C用轻质弹簧拴接。当弹簧处于自然长度时,B在O点;当B静止时,B在M点,OM=L.在P点还有一小物体A,使A从静止开始下滑,A,B相碰后一起压缩弹簧,A第一次脱离B后最高能上升到N点,ON="1.5L." B运动还会拉伸弹簧,使C物体刚好能脱离挡板D。A、B、C的质量都是m,重力加速度为g. 已知弹性势能与形变量大小有关。求:
(1)弹簧的劲度系数;
(2)弹簧第一次回复到原长时B速度的大小;
(3)M、P之间的距离。
(1)k=
(2)
(3)x=9l

(1)B静止时,弹簧形变量为l,弹簧产生弹力F=kl
B物体受力如图所示,根据物体平衡条件得

kl =mgsinθ         
得弹簧的劲度系数k=             3分
(2)当弹簧第一次恢复原长时AB恰好分离,设此时AB速度相等大小为v3
A物体,从AB分离到A速度变为0的过程,根据机械能守恒定律得                       
此过程中A物体上升的高度   
得                                                             3分
(3)设AB相碰前速度的大小为v1AB相碰后速度的大小为v2MP之间距离为x。对A物体,从开始下滑到AB相碰的过程,根据机械能守恒定律得     ------(1)
AB发生碰撞,根据动量守恒定律得  m v1=(m+mv2      -----------(2)
B静止时弹簧的弹性势能为EP,从AB开始压缩弹簧到弹簧第一次恢复原长的过程,根据机械能守恒定律得
    --------(3)
B物体的速度变为0时,C物体恰好离开挡板D,此时弹簧的伸长量也为l,弹簧的弹性势能也为EP。对B物体和弹簧,从AB分离到B速度变为0的过程,根据机械能守恒定律得
       ----------(4)
联立解得     x=9l                                       6分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网