题目内容

如图所示,电阻不计的两光滑金属导轨相距L,放在水平绝缘桌面上,半径为R的l/4圆弧部分处在竖直平面内,水平直导轨部分处在磁感应强度为B,方向竖直向下的匀强磁场中,末端与桌面边缘平齐。两金属棒ab、cd垂直于两导轨且与导轨接触良好。棒ab质量为2 m,电阻为r,棒cd的质量为m,电阻为r。重力加速度为g。开始时棒cd静止在水平直导轨上,棒ab从圆弧顶端无初速度释放,进入水平直导轨后与棒cd始终没有接触并一直向右运动,最后两棒都离开导轨落到地面上。棒ab与棒cd落地点到桌面边缘的水平距离之比为1:3。求:

   (1)棒ab和棒cd离开导轨时的速度大小;

   (2)棒cd在水平导轨上的最大加速度;

   (3)两棒在导轨上运动过程中产生的焦耳热。

(1)

(2)

(3)


解析:

(1)设ab棒进入水平导轨的速度为v1,ab棒从圆弧导轨滑下机械能定恒:

             ①    (2分)

离开导轨时,设ab棒的速度为棒的速度为棒与棒在水平导轨上运动,

动量定恒,

   ②    (2分)

依题意,两棒离开导轨做平抛运动的时间相等,

由平热量运动水平位移可知

③    (2分)

联立①②③解得  (2分)

(2)ab棒刚进入水平导轨时,cd棒受到的安培力最大,此时它的加速度最大,设此时回路的感应电动势为       ④    (1分)

         ⑤    (1分)

cd棒受到的安培力为:    ⑥    (1分)

根据牛顿第二定律,cd棒有最大加速度为

              ⑦    (1分)

联立④⑤⑥⑦解得:

               (2分)

(3)根据能量定恒,两棒在轨道上运动过程产生的焦耳热为:

    ⑧    (2分)

联立①⑧并代入解得:

                     (2分)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网