ÌâÄ¿ÄÚÈÝ
10£®ÔÚÑéÖ¤»úеÄÜÊغ㶨ÂɵÄʵÑéÖУ¨1£©ÏÂÁÐ˵·¨£¬ÕýÈ·µÄÊÇAB£®
A£®ÔÚ°²×°µç»ð»¨¼ÆʱÆ÷ʱ£¬Ä«·ÛÖ½ÅÌÒª¼ÐÔÚÁ½ÌõÖ½´øÖ®¼ä
B£®ÎªÁ˼õСÎó²î£¬ÖØÎïÖÊÁ¿Ó¦´óЩ
C£®ÊµÑéʱ£¬Ó¦ÏÈËÉ¿ªÖ½´ø£¬ÖØ´¸Ô˶¯Îȶ¨ºóÔÙ½ÓͨµçÔ´
D£®ÈôtΪÆðµãµ½Ä³µãµÄʱ¼ä£¬¼ÆËã¸ÃµãµÄËٶȿÉÓù«Ê½v=gt
£¨2£©ÈôʵÑéÖÐËùÓõÄÖØ´¸µÄÖÊÁ¿Îªm=0.1kg£¬´òµãÖ½´øÈçͼËùʾ£¬´òµãʱ¼ä¼ä¸ôΪ0.02s£¬È¡Bµã·ÖÎö£¬ÖØ´¸¶¯ÄÜEkB=0.0171J£¬´Ó¿ªÊ¼ÏÂÂäÆðÖÁBµãʱÖØ´¸µÄÖØÁ¦ÊÆÄܼõÉÙÁ¿ÊÇ0.0172J£®£¨¼ÆËã½á¹û±£ÁôÈýλÓÐЧÊý×Ö£©
£¨3£©¸ù¾ÝÖ½´øËã³öÏà¹Ø¸÷µãµÄËÙ¶Èv£¬Á¿³ö¶ÔÓ¦ÏÂÂäµÄ¾àÀëh£¬ÔòÒÔ$\frac{1}{2}{v^2}$Ϊ×ÝÖá¡¢ÒÔhΪºáÖá×÷³öµÄͼÏóÓ¦ÊÇÏÂͼÖеÄC£®
·ÖÎö ½â¾öʵÑéÎÊÌâÊ×ÏÈÒªÕÆÎÕ¸ÃʵÑéÔÀí£¬Á˽âʵÑéµÄÒÇÆ÷¡¢²Ù×÷²½ÖèºÍÊý¾Ý´¦ÀíÒÔ¼°×¢ÒâÊÂÏÇå³þ¸ÃʵÑéµÄÎó²îÀ´Ô´£®
Ö½´ø·¨ÊµÑéÖУ¬ÈôÖ½´øÔȱäËÙÖ±ÏßÔ˶¯£¬²âµÃÖ½´øÉϵĵã¼ä¾à£¬ÀûÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ£¬¿É¼ÆËã³ö´ò³öijµãʱֽ´øÔ˶¯µÄ˲ʱËٶȣ¬´Ó¶øÇó³ö¶¯ÄÜ£®¸ù¾Ý¹¦ÄܹØϵµÃÖØÁ¦ÊÆÄܼõСÁ¿µÈÓÚÖØÁ¦×ö¹¦µÄÊýÖµ£®
½â´ð ½â£º£¨1£©A¡¢ÔÚ°²×°µç»ð»¨¼ÆʱÆ÷ʱ£¬Ä«·ÛÖ½ÅÌÒª¼ÐÔÚÁ½ÌõÖ½´øÖ®¼ä£¬¹ÊAÕýÈ·£»
B¡¢ÎªÁ˼õСÎó²î£¬ÖØÎïÖÊÁ¿Ó¦´óЩ£¬Ìå»ýÓ¦¸ÃСЩ£¬¹ÊBÕýÈ·£»
C¡¢ÊµÑéʱ£¬Ó¦ÏȽÓͨµçÔ´£¬ÔÙËÉ¿ªÖ½´ø£¬¹ÊC´íÎó£»
D¡¢Èç¹û°ÑÖØÎïµÄʵ¼ÊÔ˶¯¿´³É×ÔÓÉÂäÌåÔ˶¯£¬ÔÙÔËÓÃ×ÔÓÉÂäÌåµÄ¹æÂÉÇó½âËٶȣ¬ÄÇô¾Í²»ÐèÒªÑéÖ¤£¬¹ÊD´íÎó£»
£¨2£©¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯ÖÐʱ¼äÖеãµÄ˲ʱËٶȵÈÓڸùý³ÌÖеÄƽ¾ùËÙ¶ÈÓУº
vB=$\frac{{x}_{AC}}{2T}$=$\frac{0.0312-0.0078}{2¡Á0.02}$=0.59m/s
ËùÒÔÆ䶯ÄÜΪ£ºEkB=$\frac{1}{2}$m${v}_{B}^{2}$=$\frac{1}{2}$¡Á0.1¡Á£¨0.59£©2=0.0171J
ÖØÁ¦×ö¹¦µÈÓÚÖØÁ¦ÊÆÄܵļõСÁ¿£¬Òò´ËÓУº
¡÷EP=mgx=0.1¡Á9.8¡Á0.0176=0.0172J
£¨3£©ÀûÓÃ$\frac{1}{2}$v2-hͼÏß´¦ÀíÊý¾Ý£¬´ÓÀíÂ۽ǶÈÎïÌå×ÔÓÉÏÂÂä¹ý³ÌÖлúеÄÜÊغã¿ÉÒԵóö£º
mgh=$\frac{1}{2}$mv2£¬¼´$\frac{1}{2}$v2=gh
ËùÒÔÒÔ$\frac{1}{2}$v2Ϊ×ÝÖᣬÒÔhΪºáÖỳöµÄͼÏßÓ¦ÊǹýÔµãµÄÇãбֱÏߣ¬Ò²¾ÍÊÇͼÖеÄC£®
¹Ê´ð°¸Îª£º£¨1£©AB£» £¨2£©0.0171£» 0.0172£»£¨3£©C£®
µãÆÀ ÕýÈ·½â´ðʵÑéÎÊÌâµÄÇ°ÌáÊÇÃ÷ȷʵÑéÔÀí£¬´ÓʵÑéÔÀí³ö·¢½øÐзÖÎöËùÐèʵÑéÆ÷²Ä¡¢Ëù²âÊý¾Ý¡¢Îó²î·ÖÎöµÈ£¬»áÆðµ½Ê°빦±¶µÄЧ¹û£®
ÓÃÔ˶¯Ñ§¹«Ê½¡¢ÍÆÂۺͶ¯ÄÜ¡¢ÖØÁ¦ÊÆÄܵĶ¨Òåʽ½â¾öÎÊÌâÊǸÃʵÑéµÄ³£¹æÎÊÌ⣬ҪעÒⵥλµÄ»»ËãºÍÓÐЧÊý×ֵı£Áô£®
A£® | Îï¿é»¬¶¯Ê±ÊܵÄĦ²ÁÁ¦´óСÊÇ6N | |
B£® | Îï¿éµÄÖÊÁ¿Îª2kg | |
C£® | Îï¿éÔÚ6¡«9sÄڵļÓËٶȴóСÊÇ1m/s2 | |
D£® | Îï¿éÔÚ9sÄÚµÄƽ¾ùËٶȴóСÊÇ4m/s |
A£® | $\frac{L_1}{2}\sqrt{\frac{g}{6h}}£¼v£¼{L_1}\sqrt{\frac{g}{6h}}$ | B£® | $\frac{L_1}{4}\sqrt{\frac{g}{h}}£¼v£¼{L_1}\sqrt{\frac{£¨4L_1^2+L_2^2£©g}{6h}}$ | ||
C£® | $\frac{L_1}{2}\sqrt{\frac{g}{6h}}£¼v£¼\frac{L_1}{2}\sqrt{\frac{£¨4L_1^2+L_2^2£©g}{6h}}$ | D£® | $\frac{L_1}{4}\sqrt{\frac{g}{h}}£¼v£¼\frac{1}{2}\sqrt{\frac{£¨4L_1^2+L_2^2£©g}{6h}}$ |