题目内容
(2010?重庆模拟)如图所示,A为静止于地球赤道上的物体,B为绕地球沿椭圆轨道运行的卫星,C为绕地球做圆周运动的卫星,P为B、C两卫星轨道的交点.已知A、B、C绕地心运动的周期相同,相对于地心,下列说法中正确的是( )
分析:根据A、C的周期相等,知角速度相等,通过v=rω比较A、C速度的大小.因为卫星的周期一定,根据万有引力提供向心力确定其轨道半径一定.根据卫星所受的万有引力,通过牛顿第二定律比较加速度的大小.
解答:解:A、物体A和卫星C的周期相等,则角速度相等,根据v=rω知,半径越大,线速度越大.所以卫星C的运行速度大于物体A的速度.故A错误.
B、物体A和卫星C的周期相等,则角速度相等,根据a=rω2知,半径越大,加速度越大,所以卫星C的运行加速度大于物体A的加速度.故B错误
C、根据a=
,两卫星距离地心的距离相等,则加速度相等.故C正确.
D、卫星B做椭圆轨道运动,卫星C做圆周运动,卫星B在P点的线速度与卫星C在该点的线速度不一定相同,故D错误.
故选:C.
B、物体A和卫星C的周期相等,则角速度相等,根据a=rω2知,半径越大,加速度越大,所以卫星C的运行加速度大于物体A的加速度.故B错误
C、根据a=
GM |
r2 |
D、卫星B做椭圆轨道运动,卫星C做圆周运动,卫星B在P点的线速度与卫星C在该点的线速度不一定相同,故D错误.
故选:C.
点评:解决本题的关键知道A和C的角速度相等,通过v=rω 比较线速度大小,注意物体A随地球做圆周运动不是靠万有引力提供向心力.
练习册系列答案
相关题目