题目内容
【题目】如图所示,一箱子高为H.底边长为L,一小球从一壁上沿口A垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离C点距离为,求小球抛出时的初速度v0;
(2)若小球正好落在箱子的B点,求初速度的可能值。
【答案】(1) (2)
【解析】
(1)将整个过程等效为完整的平抛运动,结合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的B点,则水平位移应该是2L的整数倍,通过平抛运动公式列式求解初速度可能值。
(1)此题可以看成是无反弹的完整平抛运动,
则水平位移为:x==v0t
竖直位移为:H=gt2
解得:v0= ;
(2)若小球正好落在箱子的B点,则小球的水平位移为:x′=2nL(n=1.2.3……)
同理:x′=2nL=v′0t,H=gt′2
解得: (n=1.2.3……)
练习册系列答案
相关题目