题目内容
如图,一半径为R的光滑绝缘半球面开口向下,固定在水平面上。整个空间存在匀强磁场,磁感应强度方向竖直向下。一电荷量为q(q>0)、质量为m的小球P在球面上做水平的匀速圆周运动,圆心为O’。球心O到该圆周上任一点的连线与竖直方向的夹角为θ(0<θ<。为了使小球能够在该圆周上运动,求磁感应强度大小的最小值及小球P相应的速率。重力加速度为g。
据题意,小球P在球面上做水平的匀速圆周运动,该圆周的圆心为O’。P受到向下的重力mg、球面对它沿OP方向的支持力N和磁场的洛仑兹力
f=qvB ①
式中v为小球运动的速率。洛仑兹力f的方向指向O’。根据牛顿第二定律
②
③
由①②③式得
④
由于v是实数,必须满足
≥0 ⑤
由此得B≥ ⑥
可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为
⑦
此时,带电小球做匀速圆周运动的速率为
⑧
由⑦⑧式得
⑨
f=qvB ①
式中v为小球运动的速率。洛仑兹力f的方向指向O’。根据牛顿第二定律
②
③
由①②③式得
④
由于v是实数,必须满足
≥0 ⑤
由此得B≥ ⑥
可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为
⑦
此时,带电小球做匀速圆周运动的速率为
⑧
由⑦⑧式得
⑨
练习册系列答案
相关题目