ÌâÄ¿ÄÚÈÝ
Ôڹ⻬ˮƽÃæÉÏÓÐÒ»¸öÄÚÍâ±Ú¶¼¹â»¬µÄÖÊÁ¿ÎªMµÄÆø¸×£¬Æø¸×ÄÚÓÐÒ»ÖÊÁ¿ÎªmµÄ»îÈû£¬ÒÑÖªM£¾m¡£»îÈûÃÜ·âÒ»²¿·ÖÀíÏëÆøÌ壮ÏÖ¶ÔÆø¸×Ê©¼ÓÒ»¸öˮƽÏò×óµÄÀÁ¦F£¨Èçͼ¼×Ëùʾ£©Ê±£¬Æø¸×µÄ¼ÓËÙ¶ÈΪa1£¬·â±ÕÆøÌåµÄѹǿΪp1£¬Ìå»ýΪV1£»ÈôÓÃͬÑù´óСµÄÁ¦FˮƽÏò×óÍÆ»îÈû£¨ÈçͼÒÒËùʾ£©£¬´ËʱÆø¸×µÄ¼ÓËÙ¶ÈΪa2£¬·â±ÕÆøÌåµÄѹǿΪp2£¬Ìå»ýΪV2¡£ÉèÃÜ·âÆøÌåµÄÖÊÁ¿ºÍζȾù²»±ä£¬Ôò
A£®a1 = a2£¬p1£¼p2£¬V1£¾V2
B£®a1£¼a2£¬p1£¾p2£¬V1£¼V2
C£®a1 = a2£¬p1£¼p2£¬V1£¼V2
D£®a1£¾a2£¬p1£¾p2£¬V1£¾V2
A
½âÎö£ºÓÉF = maµÃ£¬a1 = a2£¬ÒòΪp1 = p0£¬p2£¾ p0 £¬ÓÐp1 £¼p2 £¬V1£¾V2¡£
Ìáʾ£º¶¨ÐÔ·ÖÎöѹǿ¡¢Î¶ȡ¢Ìå»ýÖ®¼äµÄ¹ØϵҪÇóÀí½âÆøÌåµÄ״̬²ÎÁ¿µÄ΢¹ÛÒâÒ壬ÆäÖУ¬ÆøÌåѹǿÊÇ´óÁ¿·Ö×ÓƵ·±ÅöײÆ÷±ÚÐγɵģ¬ËüÓ뵥λÌå»ýÄڵķÖ×ÓÊý¼°·Ö×ÓµÄƽ¾ù¶¯ÄÜÓйأ¬¶ø·Ö×ÓµÄƽ¾ù¶¯ÄÜ¿ÉÓɺê¹ÛµÄζÈÀ´ºâÁ¿¡£
¶ÔÆøÌåÀ´Ëµ£¬³ýÁËÀí½âÆø̬·½³ÌÍ⣬»¹Ó¦×¢ÒâÏÂÁзÖÎöÏß·£º¢Ùζȡú·Ö×Óƽ¾ù¶¯ÄÜ¡ú·Ö×Óƽ¾ùËÙÂÊ¡úÅöײÁ¦¡úѹǿ£»¢ÚÌå»ý¡ú·Ö×ÓÃܼ¯¶È¡úѹǿ£»¢Ûζȱä¡ú·Ö×Óƽ¾ù¶¯Äܱä¡ú×Ü·Ö×Ó¶¯Äܱä¡úÆøÌåµÄÄÚÄܱ䡣
A¡¢Ð¡ÇòaÏȵ½´ïOµã | B¡¢Ð¡ÇòbÏȵ½´ïOµã | C¡¢ÈýÇòͬʱµ½´ïOµã | D¡¢a¡¢b¡¢cÈýÇòÄÜ·ñͬʱµ½´ï²»ÄÜÈ·¶¨ |