ÌâÄ¿ÄÚÈÝ
½«ÖÊÁ¿ÎªMµÄľ¿é¹Ì¶¨Ôڹ⻬ˮƽÃæÉÏ£¬Ò»¿ÅÖÊÁ¿ÎªmµÄ×Óµ¯ÒÔËٶȦÔ0ÑØˮƽ·½ÏòÉäÈëľ¿é£¬×Óµ¯É䴩ľ¿éʱµÄËÙ¶ÈΪ
£¬ÏÖ½«Í¬ÑùµÄľ¿é·ÅÔڹ⻬µÄˮƽ×ÀÃæÉÏ£¬ÏàͬµÄ×Óµ¯ÈÔÒÔËٶȦÔ0ÑØˮƽ·½ÏòÉäÈëľ¿é£¬ÔòÒÔÏÂ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
v0 |
3 |
·ÖÎö£ºÄ¾¿é¹Ì¶¨Ê±£¬×Óµ¯É䴩ľ¿é£¬¿Ë·þĦ²ÁÁ¦×öµÄ¹¦µÈÓÚ²úÉúµÄÄÚÄÜ£¬¸ù¾ÝÄÜÁ¿ÊغãÁÐʽ£»Ä¾¿é²»¹Ì¶¨Ê±£¬×Óµ¯ÉäÈëľ¿é£¬ÏµÍ³¶¯Á¿Êغ㣬¼ÙÉè²»ÄÜ´©³ö£¬Ôò×îºóÓй²Í¬Ëٶȣ¬¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÇó½â³ö¹²Í¬ËٶȺ󣬸ù¾Ý¹¦ÄܹØϵÁÐʽÇó½â×Óµ¯ÉäÈëÉî¶È£¬¿´Óë¼ÙÉèÊÇ·ñì¶Ü£¬´Ó¶øÅжÏÊÇ·ñÉä³ö£®
½â´ð£º½â£ºA¡¢B¡¢C¡¢Ä¾¿é¹Ì¶¨Ê±£¬×Óµ¯É䴩ľ¿é£¬Éèľ¿é³¤¶ÈΪd£¬¸ù¾Ý¹¦ÄܹØϵ£¬ÓÐ
fd=
m
-
m£¨
£©2
Q=
m
-
m£¨
£©2
¹Ê
fd=Q=
m
¼´
f=
¢Ù
ľ¿é²»¹Ì¶¨Ê±£¬×Óµ¯ÉäÈëľ¿é£¬ÏµÍ³¶¯Á¿Êغ㣬¼ÙÉè²»ÄÜ´©³ö£»
¸ù¾Ý¶¯Á¿Êغ㶨ÂÉ£¬ÓÐ
mv0=£¨M+m£©v
¸ù¾Ý¹¦ÄܹØϵ£¬ÓÐ
Q¡ä=fx=
m
-
£¨M+m£©v2
¾ÝÌâÒ⣬ÓУºM=3m
½âµÃ
x=
¢Ú
½«¢Ùʽ´úÈë¢Úʽ£¬µÃµ½
x=
d£¼d
¹Ê¼ÙÉè³ÉÁ¢£¬×Óµ¯²»ÄÜÉä³ö£»¹ÊA´íÎó£¬BÕýÈ·£¬C´íÎó£»
D¡¢ÓÉÇ°Ãæ½â´ð¿ÉÖª£¬ÒòΪ²»ÖªµÀMÓëm¹Øϵ£¬¹ÊÎÞ·¨È·¶¨×Óµ¯ÄÜ·ñ´ò´©Ä¾¿é£®¹ÊD´íÎó£»
¹ÊÑ¡B£®
fd=
1 |
2 |
v | 2 0 |
1 |
2 |
v0 |
3 |
Q=
1 |
2 |
v | 2 0 |
1 |
2 |
v0 |
3 |
¹Ê
fd=Q=
4 |
9 |
v | 2 0 |
¼´
f=
4m
| ||
9d |
ľ¿é²»¹Ì¶¨Ê±£¬×Óµ¯ÉäÈëľ¿é£¬ÏµÍ³¶¯Á¿Êغ㣬¼ÙÉè²»ÄÜ´©³ö£»
¸ù¾Ý¶¯Á¿Êغ㶨ÂÉ£¬ÓÐ
mv0=£¨M+m£©v
¸ù¾Ý¹¦ÄܹØϵ£¬ÓÐ
Q¡ä=fx=
1 |
2 |
v | 2 0 |
1 |
2 |
¾ÝÌâÒ⣬ÓУºM=3m
½âµÃ
x=
3m
| ||
8f |
½«¢Ùʽ´úÈë¢Úʽ£¬µÃµ½
x=
27 |
32 |
¹Ê¼ÙÉè³ÉÁ¢£¬×Óµ¯²»ÄÜÉä³ö£»¹ÊA´íÎó£¬BÕýÈ·£¬C´íÎó£»
D¡¢ÓÉÇ°Ãæ½â´ð¿ÉÖª£¬ÒòΪ²»ÖªµÀMÓëm¹Øϵ£¬¹ÊÎÞ·¨È·¶¨×Óµ¯ÄÜ·ñ´ò´©Ä¾¿é£®¹ÊD´íÎó£»
¹ÊÑ¡B£®
µãÆÀ£º±¾Ìâ¹Ø¼üÊǶÔ×Óµ¯É䴩ľ¿é¹ý³ÌÔËÓö¯Á¿ÊغãºÍ¹¦ÄܹØϵÁªÁ¢·½³ÌÇó½â£¬È»ºó¶Ô½á¹û½øÐÐÌÖÂÛ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿