ÌâÄ¿ÄÚÈÝ
9£®ÈçͼËùʾ£¬³¤Îªa¿íΪbµÄ¾ØÐÎÇøÓòÄÚ£¨°üÀ¨±ß½ç£©ÓдŸÐӦǿ¶ÈΪBµÄÔÈÇ¿´Å³¡£¬´Å³¡·½Ïò´¹Ö±Ö½ÃæÏòÍ⣮0µãÓÐÒ»Á£×ÓÔ´£¬Ä³Ê±¿ÌÁ£×ÓÔ´Ïò´Å³¡ËùÔÚÇøÓòÓë´Å³¡´¹Ö±µÄƽÃæÄÚËùÓз½Ïò·¢Éä´óÁ¿ÖÊÁ¿ÎªmµçÁ¿ÎªqµÄ´øÕýµçµÄÁ£×Ó£¬Á£×ÓµÄËٶȴóСÏàͬ£¬Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯µÄÖÜÆÚΪT£¬×îÏȴӴų¡Éϱ߽çÉä³öµÄÁ£×Ó¾ÀúµÄʱ¼äΪ$\frac{T}{12}$£¬×îºó´Ó´Å³¡ÖзɳöµÄÁ£×Ó¾ÀúµÄʱ¼äΪ$\frac{T}{4}$£¬²»¼ÆÖØÁ¦ºÍÁ£×ÓÖ®¼äµÄÏ໥×÷Óã¬Ôò£¨¡¡¡¡£©A£® | Á£×ÓËٶȴóСΪ$\frac{qBb}{m}$ | |
B£® | Á£×Ó×öÔ²ÖÜÔ˶¯µÄ°ë¾¶Îª3b | |
C£® | aµÄ³¤¶ÈΪ£¨$\sqrt{3}$+1£©b | |
D£® | ×îºó´Ó´Å³¡ÖзɳöµÄÁ£×ÓÒ»¶¨´ÓÉϱ߽çµÄÖеã·É³ö |
·ÖÎö ¸ù¾Ý×óÊÖ¶¨Ôò¿ÉÖª£¬Á£×ÓÔڴų¡ÖÐÊܵ½µÄÂåÂ××ÈÁ¦µÄ·½ÏòÏòÓÒ£¬½«ÏòÓÒƫת£¬ÓÉÔ˶¯µÄÌصãÓëÔ˶¯µÄ×î¶Ìʱ¼ä£¬¼´¿ÉÅжϳöƫתµÄ½Ç¶È£»È»ºóÓɼ¸ºÎ¹ØϵÇó³öÁ£×ӵİ뾶£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦Çó³öÁ£×ÓÔ˶¯µÄËٶȣ®¸ù¾Ý¼¸ºÎ¹Øϵ£¬Åжϳö×îºó´Ó´Å³¡ÖзɳöµÄÁ£×ӵĹ켣£¬µÃ³öaµÄ³¤¶ÈÒÔ¼°Á£×ӷɳö´Å³¡µÄλÖã®
½â´ð ½â£ºA¡¢B¡¢¸ù¾Ý×óÊÖ¶¨Ôò¿ÉÖª£¬Á£×ÓÔڴų¡ÖÐÊܵ½µÄÂåÂ××ÈÁ¦µÄ·½ÏòÏòÓÒ£¬½«ÏòÓÒƫת£®½áºÏÔ˶¯µÄÌصã¿ÉÖª£¬Á£×ÓÏòÉϵķÖËÙ¶ÈÔ½´ó£¬ÔòÔ½Ôç´ÓÉϱ߽ç·É³ö£®ËùÒÔ×îÔç´ÓÉϱ߽ç·É³öµÄÁ£×Ó½øÈë´Å³¡µÄ·½ÏòÊÇÊúÖ±ÏòÉϵģ®
ÓÖÓÉÌâ×îÏȴӴų¡Éϱ߽çÉä³öµÄÁ£×Ó¾ÀúµÄʱ¼äΪ$\frac{T}{12}$£¬¸ù¾Ý£º$\frac{t}{T}=\frac{¦È}{360¡ã}$£¬ÔòÁ£×ÓƫתµÄ½Ç¶È£º$¦È=\frac{t}{T}¡Á360=\frac{1}{12}¡Á360=30¡ã$£®
×ö³öÕâÖÖÇé¿öÏÂÁ£×ÓÔ˶¯µÄ¹ì¼£Èçͼ1£¬ÓÉͼÖм¸ºÎ¹Øϵ¿ÉÖª£º$r=\frac{b}{sin30¡ã}=2b$
Á£×ÓÔڴų¡ÖÐÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¼´£º$qvB=\frac{m{v}^{2}}{r}$
ËùÒÔ£º$v=\frac{qBr}{m}=\frac{2qBb}{m}$£®¹ÊA´íÎó£¬B´íÎó£»
C¡¢D¡¢Á£×ÓµÄÈëÉäµÄ·½ÏòÔÚ90¡ãµÄ·¶Î§ÒÔÄÚ£¬ÓÖr=2b£¬ËùÒÔÁ£×ÓÔ˶¯µÄ¹ì¼£²»»á³¬¹ý°ë¸öÔ²£¬Ô˶¯µÄʱ¼ä²»³¬¹ý°ë¸öÖÜÆÚ£¬ÓÉ$\frac{t}{T}=\frac{¦È}{360¡ã}$¿ÉÖª£¬¹ì¼£µÄÔ²ÐĽÇÔ½´ó£¬ÔòÔ˶¯µÄʱ¼äÔ½³¤£¬¶øÔ²ÐĽÇÔ½´ó£¬¶ÔÓ¦µÄÏÒ³¤Ô½³¤£¬ËùÒÔÁ£×ÓÔ˶¯µÄ×ʱ¼äµÄ¹ì¼££¬ÏÒ³¤Ò²×£®ËùÒÔ×îºóÉä³ö´Å³¡µÄÁ£×ÓÒ»¶¨ÊǴӴų¡µÄÓÒ±ßÉä³ö£¬×îºó´Ó´Å³¡ÖзɳöµÄÁ£×Ó¾ÀúµÄʱ¼äΪ$\frac{T}{4}$£¬»³öÔ˶¯µÄ×¹ì¼£Èçͼ2£¬
Ôò£º$sin¦Á=\frac{r-b}{r}=\frac{2b-b}{2b}=\frac{1}{2}$
ËùÒÔ£º¦Á=30¡ã£¬¦Â=90¡ã-¦Á=60¡ã£¬
ÓÉÓÚ×îºó´Ó´Å³¡ÖзɳöµÄÁ£×Ó¾ÀúµÄʱ¼äΪ$\frac{T}{4}$£¬Ôòƫת½ÇµÈÓÚ90¡ã£¬¦Ã=90¡ã-¦Â=30¡ã
Óɼ¸ºÎ¹Øϵ¿ÉµÃ£º$a=r•cos¦Á+r•sin¦Ã=2b•cos30¡ã+2b•sin30¡ã=£¨\sqrt{3}+1£©b$£®¹ÊCÕýÈ·£¬D´íÎó£®
¹ÊÑ¡£ºC
µãÆÀ ¸ÃÌ⿼²é´øµçÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄ¼¸ÖÖÁÙ½çÎÊÌ⣬½âÌâµÄ¹Ø¼üÊǸù¾ÝÌâÄ¿µÄÌõ¼þ£¬ÕýÈ·»³öÁ£×ÓÔ˶¯µÄ¹ì¼££¬È»ºó´ÓÔ˶¯µÄ¹ì¼£ÖÐÈ·¶¨ÁÙ½çÌõ¼þºÍ¼¸ºÎ¹Øϵ£®
A£® | 4A | B£® | 2$\sqrt{2}$A | C£® | $\frac{8}{3}$A | D£® | $\frac{2\sqrt{30}}{3}$A |
A£® | 0¡«1sÄÚ»ð¼ýÔÈËÙÉÏÉý | B£® | 1¡«2sÄÚ»ð¼ý¾²Ö¹²»¶¯ | ||
C£® | 3sÄ©»ð¼ý»Øµ½³ö·¢µã | D£® | 5sÄ©»ð¼ý»Øµ½³ö·¢µã |
A£® | ÌìÈ»·ÅÉäÏÖÏó˵Ã÷Ô×Ӻ˻¹¾ßÓи´Ôӽṹ | |
B£® | Ò»Êø¹âÕÕÉ䵽ijÖÖ½ðÊôÉϲ»ÄÜ·¢Éú¹âµçЧӦ£¬¿ÉÄÜÊÇÒòΪÕâÊø¹âµÄ¹âǿ̫С | |
C£® | ÓÃ14 eVµÄ¹â×ÓÕÕÉä´¦ÓÚ»ù̬µÄÇâÔ×Ó£¬¿ÉʹÆäµçÀë | |
D£® | ${\;}_{6}^{14}$CµÄ°ëË¥ÆÚΪ5 730Ä꣬Èô²âµÃÒ»¹ÅÉúÎïÒź¡ÖеÄ${\;}_{6}^{14}$Cº¬Á¿Ö»ÓлîÌåÖеÄ$\frac{1}{8}$£¬Ôò´ËÒź¡¾à½ñÔ¼ÓÐ45840Äê | |
E£® | ·ÅÉäÐÔÔªËصİëË¥ÆÚÓëÔªËØËù´¦µÄÎïÀíºÍ»¯Ñ§×´Ì¬Î޹أ¬ËüÊÇÒ»¸öͳ¼Æ¹æÂÉ£¬Ö»¶Ô´óÁ¿µÄ·ÅÉäÐÔÔ×Ӻ˲ÅÊÊÓà |
A£® | a¡¢b¼ÓËٶȵĴóС֮±ÈΪ£¨$\frac{R+h}{R}$£©2 | |
B£® | a¡¢c¼ÓËٶȵĴóС֮±ÈΪ1+$\frac{h}{R}$ | |
C£® | a¡¢b¡¢cËٶȴóС¹ØϵΪva£¾vb£¾vc | |
D£® | Òª½«bÎÀÐÇתÒƵ½aÎÀÐǵĹìµÀÉÏÔËÐÐÖÁÉÙÐèÒª¶ÔbÎÀÐǽøÐÐÁ½´Î¼ÓËÙ |