题目内容

如图所示,在光滑水平面上有两辆车处于静止状态,其上分别站有甲、乙两个小孩,每辆车和小孩的总质量均为M,甲车上的小孩拿着一质量为m的球。现小孩甲将球抛给乙,乙接住后又抛回给甲,如此重复多次,最后球又回到了甲的手中,求甲、乙两车最后的速率之比。
M:(M+m)
此题若先以甲车及其上的小孩和球为研究对象,应用动量守恒定律列出方程,再以乙车、小孩乙及球为研究对象同样列方程,如此这样分析下去,将非常繁锁。可见,这样选取研究对象显然是不好的。
因为在抛球的过程中,只有两车、两个小孩和球组成的系统之间发生相互作用,因此可以两车、两小孩及球组成的系统为研究对象,以第一次小孩甲抛球时为初态,以最后小孩甲接住球为末态进行研究。因系统在水平方向不受外力,故系统动量守恒。初态系统的总动量为零;末态甲车、小孩及球的总动量为(M+m)v,乙车及其上小孩的总动量为mv,设甲车的运动方向为正,则据动量守恒定律便可解得。
解:以两车、两小孩及球组成的系统为研究对象,选最后甲车速度为正方向,设最后甲、乙两车速度分别为v、v,自始至终系统动量守恒。
对于系统的初、末状态由动量守恒得:


甲、乙速率之比为M:(M+m)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网