题目内容

【题目】如图所示,左图是游乐场中过山车的实物图片,右图是过山车的原理图.在原理图中半径分别为R1=2.0 mR2=8.0 m的两个光滑圆形轨道,固定在倾角为a=37°斜轨道面上的QZ两点,且两圆形轨道的最高点AB均与P点平齐,圆形轨道与斜轨道之间圆滑连接.现使小车(视作质点)从P点以一定的初速度沿斜面向下运动.已知斜轨道面与小车间的动摩擦因数为g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:

(1)若小车恰好能通过第一个圆形轨道的最高点A处,则其在P点的初速度应为多大?

(2)若小车在P点的初速度为10 m/s,通过计算说明小车能否安全通过两个圆形轨道?

【答案】(1)m/s(2)vB=m/s>故球能通过两个圆形轨道

【解析】试题分析小车恰好能通过第一个圆形轨道的最高点A处时,由重力提供向心力,根据牛顿第二定律求出小球经过A点的速度.由几何知识求出P、Q间的距离SPQ,运用动能定理研究小球从PA的过程,求解P点的初速度;首先根据小车在P点的初速度10m/s,与第一问中v0比较,分析小车能否安全通过圆弧轨道O1.若小车恰能通过B点,由重力提供向心力,由牛顿第二定律列方程,求出小车通过B点的临界速度,根据动能定理求出小车在P点的临界速度,再确定小车能否安全通过两个圆形轨道

1)球在A点时有:

球从PA,由动能定理可得:

由几何关系:

由以上可解得球在P点的初速度为

(2)球从PB ,由动能定理可得:

由几何关系

由以上可解得球在B点的速度为

故球能通过两个圆形轨道

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网