题目内容
如图甲所示,一竖直面内的轨道是由粗糙斜面AB和光滑圆轨道BCD组成,AB与BCD相切于B点,C为圆轨道的最低点.将小物块(可看作质点)置于轨道ABC上离地面高为H处由静止下滑,可用力传感器测出其经过C点时对轨道的压力FN.现将小物块放在ABC上不同高度处,让H从零开始逐渐增大,传感器测出小物块每次从不同高度处下滑到C点时对轨道的压力FN,得到如图乙两段直线PQ和QI,且IQ反向延长线与纵轴交点坐标值为5N,g取10m/s2.则
(1)小物块的质量m为多少?
(2)若小物块由斜面上某点从静止开始运动,恰好能通过圆轨道最高点D,求小物块在C点对轨道的压力FN大小为多少?
(3)小物块在斜面上某点由静止开始运动,并能通过C点.某同学根据图象所给信息求出圆轨道半径R=2m,轨道BC部分所对应的圆心角为θ=60°.请你再结合图象所给的信息求出斜面对小物体的滑动摩擦力大小为多少?
(1)小物块的质量m为多少?
(2)若小物块由斜面上某点从静止开始运动,恰好能通过圆轨道最高点D,求小物块在C点对轨道的压力FN大小为多少?
(3)小物块在斜面上某点由静止开始运动,并能通过C点.某同学根据图象所给信息求出圆轨道半径R=2m,轨道BC部分所对应的圆心角为θ=60°.请你再结合图象所给的信息求出斜面对小物体的滑动摩擦力大小为多少?
分析:(1)从图象得到H=0时的弹力,即为物体的重力,从而得到物体的质量m;
(2)在D点由牛顿第二定律列方程,从C到D过程应用动能定理列方程,可以求出物体对轨道的压力;
(3)对滑块从最高点到C点的过程运用动能定理列式,再对最低点运用向心力公式和牛顿第二定律列式,联立后求解出弹力的一般表达式,再根据图象求解出动摩擦因素.
(2)在D点由牛顿第二定律列方程,从C到D过程应用动能定理列方程,可以求出物体对轨道的压力;
(3)对滑块从最高点到C点的过程运用动能定理列式,再对最低点运用向心力公式和牛顿第二定律列式,联立后求解出弹力的一般表达式,再根据图象求解出动摩擦因素.
解答:解:(1)由图象可知,当H=0时:FN=4.0N,
FN=mg,m=0.4kg;
(2)在D点由牛顿第二定律:mg=
,
C到D动能定理:-2mgR=
m
-
m
,
在C点由牛顿第二定律:FN-mg=m
,
解得:FN=24N;
(3)在C点由牛顿第二定律:FN-mg=
;
由动能定理:mgH-
=
m
,
FN=(2mg-
)
+
+mg,
解法1:图象QI段斜率:k=(2mg-
)
=
=3,f=
N;
解法2:根据QI线与纵轴的截距:
+mg=5,f=
N;
答:(1)小物块的质量m为0.4kg.
(2)小物块在C点对轨道的压力FN大小为24N.
(3)斜面对小物体的滑动摩擦力大小为
N.
FN=mg,m=0.4kg;
(2)在D点由牛顿第二定律:mg=
m
| ||
R |
C到D动能定理:-2mgR=
1 |
2 |
υ | 2 D |
1 |
2 |
υ | 2 C |
在C点由牛顿第二定律:FN-mg=m
| ||
R |
解得:FN=24N;
(3)在C点由牛顿第二定律:FN-mg=
m
| ||
R |
由动能定理:mgH-
f(H-1) |
sin600 |
1 |
2 |
υ | 2 C |
FN=(2mg-
4f | ||
|
H |
R |
4f | ||
|
解法1:图象QI段斜率:k=(2mg-
4f | ||
|
1 |
R |
8-5 |
1 |
| ||
2 |
解法2:根据QI线与纵轴的截距:
2f | ||
|
| ||
2 |
答:(1)小物块的质量m为0.4kg.
(2)小物块在C点对轨道的压力FN大小为24N.
(3)斜面对小物体的滑动摩擦力大小为
| ||
2 |
点评:本题关键是对分析清楚滑块的各个运动过程,然后运用动能定理、机械能守恒定律和向心力公式,结合图象联立方程组求解.
练习册系列答案
相关题目