题目内容

如图所示,小球B用轻绳悬挂于O点,球B恰好与水平地面D点接触,水平地面与斜面连接处E可视为一小段圆弧,水平地面DE部分长度L=3.5m。一质量为m的滑块A(可视为质点)从倾角370、高度h =3m的斜面上C点由静止释放,并在水平面上与B球发生弹性碰撞。已知滑块A与接触面的动摩擦因数均是μ = 0.2,O点与C点在同一水平面上,小球B与滑块A质量相等(sin370=0.6,cos370=0.8,g = 10m/s2)。试求:

(1)B球与A球第一次碰撞后,A球摆动的最大偏角;

(2)B球第1次回到斜面上的高度;

(3)B球最终的位置到E处的距离。

 

【答案】

【解析】

mv2/2=mv21/2+mv22/2----------------------- 1分

v2 = v ,v1=0

mv22/2=mgR(1-cosθ)

θ=600--------------------------------1分

(2)mv22/2=μmgL+μmgcos370x2+ mgh1 -------------4分

x2=h1/sin370

 h1= 0.63m          ----------1分

(3)mgh1-μmgcos370x2-μmgx = 0----4分

x= 2.3 m           ------------1分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网