题目内容

【题目】质量为M、内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v,小物块与箱壁碰撞N次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )

A.
mv2
B.
C.
NμmgL
D.NμmgL

【答案】D
【解析】解:由于箱子M放在光滑的水平面上,则由箱子和小物块组成的整体动量始终是守恒的,直到箱子和小物块的速度相同时,小物块不再相对滑动,

有mv=(m+M)v1

根据能量守恒得:系统损失的动能为△Ek= mv2 (M+m)

根据功能关系得知,系统产生的内能等于系统克服摩擦力做的功,则有Q=NμmgL,故D正确,ABC错误.

故选:D.

小物块在箱壁之间来回运动的过程中,系统所受的合外力为零,动量守恒,根据动量守恒定律求出物块与箱子相对静止时共同速度,再求解物块和系统损失的动能,以及系统产生的内能.系统产生的内能等于系统克服摩擦力做的功.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网