题目内容
(18分)如图所示,在坐标原点O处,能向四周均匀发射速度大小相等、方向都平行于纸面的带正电粒子。在O点右侧有一半径为R的圆形薄板,薄板中心O′位于x轴上,且与x轴垂直放置,薄板的两端M、N与原点O正好构成等腰直角三角形。已知带电粒子的质量为m,带电量为q,速率为v,重力不计。
(1)要使y轴右侧所有运动的粒子都能打到薄板MN上,可在y轴右侧加一平行于x轴的匀强电场,则场强的最小值E0为多大?在电场强度为E0时,打到板上的粒子动能为多大?
(2)要使薄板右侧的MN连线上都有粒子打到,可在整个空间加一方向垂直纸面向里的匀强磁场,则磁场的磁感应强度不能超过多少(用m、v、q、R表示)?若满足此条件,从O点发射出的所有带电粒子中有几分之几能打在板的左边?
(18分)答案:(1)E0=,Ek=;(2)磁感应强度不能超过,
解析:(1)由题意知,要使y轴右侧所有运动粒子都能打在 MN板上,其临界条件为:沿y轴方向运动的粒子作类平抛运动,且落在M或N点。
沿y轴方向,R=vt (1分)
沿x轴方向,R=at2 (1分)
加速度 a= (1分)
解得E0= (2分)
由动能定理知qE0R=Ek- (2分)
解得Ek=(1分)
(2)加匀强磁场后,粒子沿逆时针方向做匀速圆周运动,当轨迹以O′为圆心同时过M、N两点时,轨迹直径最小(如图所示),且等于MN,即轨迹半径r=R,(3分)
由牛顿第二定律得 (2分)
解得 B=(2分)
即磁感应强度不能超过。
从O点向第四象限发射出的粒子均能打在MN板的左侧,占发射粒子总数的。(3分)
练习册系列答案
相关题目