题目内容
【题目】如图所示,直线MN表示一条平直公路,甲、乙两辆汽车分别停在A、B两处, m,现甲车开始以a1=2.5m/s2的加速度向右做匀加速直线运动,当甲车运动t0=6s时,乙车开始以a2=5m/s2的加速度向右做匀加速直线运动,求两车相遇处到A处的距离.
【答案】解:甲车运动t0=6s的位移为:
,
说明t0=6s甲车尚未追上乙车.
设此后甲车经过时间t与乙车相遇,
则有:
代入数据并整理得:t2﹣12t+32=0
解得:t1=4s t2=8s
①当t1=4s时,甲车追上乙车,第一次相遇处到A的距离为
②当t2=8s时,乙车追上甲车,第二次相遇处到A的距离为
答:第一次相遇处到A的距离为125m,第二次相遇处到A的距离为245m.
【解析】首先根据甲车的加速度、初速度,求出t0=6s时间内甲车的位移,判断是否追上了乙车.若没有追上乙车,根据相遇时两车之差等于AB间的距离求出相遇时间,再求解两车相遇处到A处的距离.
练习册系列答案
相关题目