题目内容

如图所示,水平放置的平行金属板A和B间的距离为d,板长L=d,B板的右侧边缘恰好是倾斜挡板NM上的一个小孔K,NM与水平挡板NP成60°角,K与N间的距
.
NK
=a
.现有一质量为m、电荷量为q的带正电的粒子,从AB的中点O以平行于金属板方向OO'的速度v0射入,不计粒子的重力.现在A、B板上加一恒定电压,则该粒子穿过金属板后恰好穿过小孔K.
(1)求A、B板上所加的恒定电压大小.
(2)求带电粒子到达K点的速度.
(3)在足够长的NM和NP两档板所夹的某一区域存在一垂直纸面向里的匀强磁场,使粒子经过磁场偏转后能垂直打到水平挡板NP上(之前与挡板没有碰撞),求该磁场的磁感应强度的最小值Bmin
分析:(1)带电粒子做类平抛运动,根据平抛运动的基本公式即可求解;
(2)先求出射入的粒子,在进入K时竖直方向的分速度,再求出水平速度,根据速度的合成法则求出和速度;
(3)粒子从K点入射后做匀速直线运动从D点开始进入磁场,粒子在进入磁场后,根据左手定则,所受的洛伦兹力斜向上,要使粒子能垂直打到水平挡板NP,则粒子需偏转300°后从E射出,做匀速直线运动垂直打到NP.粒子作圆周运动时,洛伦兹力提供向心力,要使B最小,则要半径r最大,临界情况是圆周运动的轨迹恰好跟两挡板相切,结合几何关系即可求解.
解答:解:(1)带电粒子做类平抛运动,则:L=v0t    ①(1分)
d
2
=
1
2
at2
  ②(1分)
a=
qU
md
③(1分)
把L=
3
d
代入①②③式可得:U=
md2v02
qL2
=
mv02
3q

(2)射入的粒子,在进入K时竖直方向的分速度为vy,则:
d
2
=
vyt
2
 ⑤
水平方向:L=
3
d=v0t
⑥(1分)
得:tanθ=
vy
v0
=
3
3
⑦(1分)
v=
v02+vy2
=
2
3
3
v
0

则θ=30°⑨,即粒子垂直MN板入射.
(3)如图所示,粒子从K点入射后做匀速直线运动从D点开始进入磁场,粒子在进入磁场后,根据左手定则,所受的洛伦兹力斜向上,要使粒子能垂直打到水平挡板NP,则粒子需偏转300°后从E射出,做匀速直线运动垂直打到NP.
粒子作圆周运动时,洛伦兹力提供向心力,即
Bqv=
mv2
r

可得B=
mv
qr

要使B最小,则要半径r最大,临界情况是圆周运动的轨迹恰好跟两挡板相切,如图所示,根据对称性圆周运动的圆心C、交点G位于∠MNP的角平分线上,则由几何关系可得:
CDKF是边长为r的正方形.则在三角形NCF中,有
3
r=a+r
可得r=
a
3
-1
                                      
解得:Bmin=
(
3
-1)mv
qa
=
(6-2
3
)mv0
3qa

答:(1)A、B板上所加的恒定电压大小为
mv02
3q

(2)带电粒子到达K点的速度为
2
3
3
v
0
,粒子垂直MN板入射.
(3)该磁场的磁感应强度的最小值为
(6-2
3
)mv0
3qa
点评:本题主要考查了平抛运动、圆周运动的基本公式的应用,要使B最小,则要半径r最大,临界情况是圆周运动的轨迹恰好跟两挡板相切,要求同学们能结合几何关系求解,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网