题目内容

【题目】如图所示,x轴与水平传送带重合,坐标原点O在传送带的左端,传送带长L8m,传送带右端Q点和竖直光滑圆轨道的圆心在同一竖直线上,皮带匀速运动的速度v05m/s。一质量m1kg的小物块轻轻放在传送带上xP2mP点,小物块随传送带运动到Q点后恰好能冲上光滑圆弧轨道的最高点N点。小物块与传送带间的动摩擦因数μ0.5,重力加速度g10 m/s2。求:

1N点的纵坐标;

2)从P点到Q点,小物块在传送带上运动系统产生的热量;

3)若将小物块轻放在传送带上的某些位置,小物块均能沿光滑圆弧轨道运动(小物块始终在圆弧轨道运动不脱轨)到达纵坐标yM=0.25mM点,求这些位置的横坐标范围。

【答案】1yN=1m;(27m≤x≤7 .5m0≤x≤5 .5m

【解析】

试题可先求出PQ过程的加速度,在根据运动学公式列式求解出Q点的速度;在N点,重力恰好提供向心力,根据牛顿第二定律和匀速圆周运动公式可求出半径,求出摩擦力和相对位移可根据Q=f△S求出热量.当物块能到达N点时不会脱离轨道,若能到达的高度超过半径又没到达N点则会脱离轨道,若能到达高度不超过半径则不会脱离轨道,可根据能量守恒求出对应的位移,从而求出坐标;

小物块在传送带上的加速度

小物块与传送带共速时,所用的时间

运动的位移

故有:

由机械能守恒定律得,解得

2)小物块在传送带上相对传送带滑动的位移

产生的热量

3)设在坐标为x1处将小物块轻放在传送带上,若刚能到达圆心右侧的M点,由能量守恒得:

μmg(Lx1)mgyM

代入数据解得x17.5 m

μmg(Lx2)mgyN

代入数据解得x27 m

若刚能到达圆心左侧的M点,由(1)可知x35.5 m

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网