题目内容
【题目】如图所示,竖直轻弹簧B的下端固定于水平面上,上端与A连接,开始时A静止。A的质量为m=2kg,弹簧B的劲度系数为k1=200N/m。用细绳跨过定滑轮将物体A与另一根劲度系数为k2的轻弹簧C连接,当弹簧C处在水平位置且未发生形变时,其右端点位于a位置,此时A上端轻绳恰好竖直伸直。将弹簧C的右端点沿水平方向缓慢拉到b位置时,弹簧B对物体A的拉力大小恰好等于A的重力。已知ab=60cm,求:
(1)当弹簧C处在水平位置且未发生形变时,弹簧B的形变量的大小;
(2)该过程中物体A上升的高度及轻弹簧C的劲度系数k2。
【答案】(1)10cm;(2)100N/m。
【解析】
(1)弹簧C处于水平位置且没有发生形变时,A处于静止,弹簧B处于压缩状态;
根据胡克定律有:k1x1=mg
代入数据解得:x1=10cm
(2)当ab=60cm时,弹簧B处于伸长状态,根据胡克定律有:
k1x2=mg
代入数据求得:x2=10cm
故A上升高度为:h=x1+x2=20cm
由几何关系可得弹簧C的伸长量为:x3=ab﹣x1﹣x2=40cm
根据平衡条件与胡克定律有:
mg+k1x2=k2x3
解得k2=100N/m
练习册系列答案
相关题目