题目内容
【题目】如图所示,质量为的带电小球用绝缘丝线悬挂于点,并处在水平向右的大小为的匀强电场中,小球静止时,丝线与竖直方向的夹角为,设重力加速度为.求:
(1)小球带何种电荷?小球所带的电荷量是多少?
(2)若将丝线烧断,则小球的加速度为多大?将做什么运动?(设电场范围足够大)
【答案】(1)负电;(2),方向沿绳子方向向下
【解析】试题分析:(1)小球静止在电场中时,受到重力、丝线的拉力和电场力而平衡,根据平衡条件确定小球的电性.小球在匀强电场中,受到的电场力大小为F=qE,根据平衡条件求出带电小球的电量.(2)丝线烧断后,小球受到重力和电场力,合力恒定,故做初速度为零的匀加速直线运动,根据牛顿第二定律求出加速度.
(1)小球受到的电场力的方向与电场线的方向相反,故小球带负电
设带电小球的质量为q,丝线所受拉力为T
根据平衡条件有:,
联立解得:
(2)小球受重力,电场力和拉力处于平衡,根据共点力平衡得:拉力为
丝线烧断后,重力和电场力不变,两个力的合力等于丝线的拉力,则有
根据牛顿第二定律得:加速度,方向沿绳子方向向下.
练习册系列答案
相关题目