题目内容

18.质量不计的直角形支架两端分别连接质量为m和2m的小球A和B.支架的两直角边长度分别为2l和l,支架可绕固定轴O在竖直平面内无摩擦转动,如图所示.开始时OA边处于水平位置,由静止释放,则(  )
A.A、B两球的最大速度之比v1:v2=1:1
B.A球与B球组成的系统机械能守恒
C.A球的速度最大时,两小球的总重力势能最小
D.A球的速度最大时,两直角边与竖直方向的夹角为45°

分析 AB两个球组成的系统机械能守恒,但对于单个的球来说机械能是不守恒的,根据系统的机械能守恒列式可以求得AB之间的关系,同时由于AB是同时转动的,它们的角速度的大小相同.

解答 解:A、根据题意知两球的角速度相同,线速度之比为VA:VB=ω•2l:ω•l=2:1,故A错误;
BC、系统只有重力做功,故机械能守恒,可知两球总重力势能最小时,二者的动能最大,故BC正确;
D、当OA与竖直方向的夹角为θ时,由机械能守恒得:
 mg•2lcosθ-2mg•l(1-sinθ)=$\frac{1}{2}$mVA2+$\frac{1}{2}$•2mVB2
解得:VA2=$\frac{8}{3}$gl(sinθ+cosθ)-$\frac{8}{3}$gl,
由数学知识知,当θ=45°时,sinθ+cosθ有最大值,故D正确;
故选:BCD

点评 本题中的AB的位置关系并不是在一条直线上,所以在球AB的势能的变化时要注意它们之间的关系,在解题的过程中还要用到数学的三角函数的知识,要求学生的数学基本功要好,本题由一定的难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网