题目内容

【题目】如图所示,楔形木块abc固定在水平面上,粗糙斜面ab和粗糙斜面bc与水平面的夹角相同,顶角b处安装一个定滑轮。质量分别为Mm(Mm)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行。两滑块由静止释放后,沿斜面做匀加速运动。若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中(

A. 轻绳对m做的功等于m机械能的增加

B. 重力对M做的功小于M减少的重力势能

C. 轻绳对m做的功等于m增加的动能与m克服摩擦力所做的功之和

D. 两滑块与轻绳组成的系统的机械能损失等于Mm克服摩擦力所做的功之和

【答案】D

【解析】

AC、根据动能定理可知,轻绳对m做的功等于m增加的机械能与m克服摩擦力所做的功之和,轻绳对m做的功大于m机械能的增加,故AC错误。

B、根据重力做功与重力势能变化的关系可知,重力对M做的功等于M重力势能的变化,故B错误。

D、根据能量守恒定律,两滑块与轻绳组成的系统的机械能损失等于Mm克服摩擦力所做的功之和,故D正确。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网