题目内容
如题图1所示的坐标系内,在x0(x0>0)处有一垂直工轴放置的挡板.在y轴与挡板之间的区域内存在一个与xoy平珏垂直且指向纸内的匀强磁场,磁感应强度B=0.2T.位于坐标原点O处的粒子源向xoy平面内发射出大量同种带正电的粒子,所有粒子的初速度大小均为vo=1.0×106m/s,方向与x轴正方向的夹角为θ,且0≤θ≤90°.该粒子的比荷为
=1.0×108C/kg,不计粒子所受重力和粒子间的相互作用,粒子打到挡板上后均被挡板吸收.
(1)求粒子在磁场中运动的轨道半径R:
(2)如题图2所示,为使沿初速度方向与x轴正方向的夹角θ=30°射出的粒子不打到挡板上,则x0必须满足什么条件?该粒子在磁场中运动的时间是多少?
(3)若x0=5.0×10-2m,求粒子打在挡板上的范围(用y坐标表示),并用“”图样在题图3中画出粒子在磁场中所能到达的区域:
q |
m |
(1)求粒子在磁场中运动的轨道半径R:
(2)如题图2所示,为使沿初速度方向与x轴正方向的夹角θ=30°射出的粒子不打到挡板上,则x0必须满足什么条件?该粒子在磁场中运动的时间是多少?
(3)若x0=5.0×10-2m,求粒子打在挡板上的范围(用y坐标表示),并用“”图样在题图3中画出粒子在磁场中所能到达的区域:
(1)由牛顿第二定律得:qvB=m
解得:R=
=5.0×10-2m
(2)如图所示,设粒子的运动轨迹恰好与挡板相切,由几何关系得:
x0=R+Rsinθ
解得:x0=7.5×10-2 m
为使该粒子不打到挡板上:x0≥7.5×10-2 m
粒子在磁场中运动的周期为T:
T=
=
=π×10-7s
由几何知识可知,粒子的轨道对应的圆心角为:α=2θ+π=
π
则该粒子在磁场中运动的时间:t=
T=
T=
π×10-7s
(3)若x0=5.0×10-2 m,则 x0=R
当粒子沿着-y方向入射时,将打在挡板上的A点,其纵坐标:yA=-R=5.0×10-2 m;
当粒子沿着+x方向入射时,粒子的运动轨迹恰好与挡板相切于B点,其纵坐标:yB=R=5.0×10-2 m
则粒子打在挡板上的范围为:-5.0×10-2 m≤y<5.0×10-2 m.
粒子在磁场中所能到达的区域如图所示.
答:
(1)粒子在磁场中运动的轨道半径R是5.0×10-2m;
(2)为使该粒子不打到挡板上,x0≥7.5×10-2 m,该粒子在磁场中运动的时间是
π×10-7s.
(3)粒子打在挡板上的范围为-5.0×10-2 m≤y<5.0×10-2 m.
| ||
R |
解得:R=
mv0 |
qB |
(2)如图所示,设粒子的运动轨迹恰好与挡板相切,由几何关系得:
x0=R+Rsinθ
解得:x0=7.5×10-2 m
为使该粒子不打到挡板上:x0≥7.5×10-2 m
粒子在磁场中运动的周期为T:
T=
2πR |
v |
2πm |
Bq |
由几何知识可知,粒子的轨道对应的圆心角为:α=2θ+π=
4 |
3 |
则该粒子在磁场中运动的时间:t=
| ||
2π |
2 |
3 |
2 |
3 |
(3)若x0=5.0×10-2 m,则 x0=R
当粒子沿着-y方向入射时,将打在挡板上的A点,其纵坐标:yA=-R=5.0×10-2 m;
当粒子沿着+x方向入射时,粒子的运动轨迹恰好与挡板相切于B点,其纵坐标:yB=R=5.0×10-2 m
则粒子打在挡板上的范围为:-5.0×10-2 m≤y<5.0×10-2 m.
粒子在磁场中所能到达的区域如图所示.
答:
(1)粒子在磁场中运动的轨道半径R是5.0×10-2m;
(2)为使该粒子不打到挡板上,x0≥7.5×10-2 m,该粒子在磁场中运动的时间是
2 |
3 |
(3)粒子打在挡板上的范围为-5.0×10-2 m≤y<5.0×10-2 m.
练习册系列答案
相关题目