ÌâÄ¿ÄÚÈÝ
£¨2011?´äÆÁÇøÄ£Ä⣩ÈçͼËùʾ£¬Ôڹ⻬¾øÔµµÄˮƽ̨ÃæÉÏ£¬´æÔÚƽÐÐÓÚˮƽÃæÏòÓÒµÄÔÈÇ¿µç³¡£¬µç³¡Ç¿¶ÈΪE£®Ë®Æ½Ì¨ÃæÉÏ·ÅÖÃÁ½¸ö¾²Ö¹µÄСÇòAºÍB£¨¾ù¿É¿´×÷Öʵ㣩£¬Á½Ð¡ÇòÖÊÁ¿¾ùΪm£¬AÇò´øµçºÉÁ¿Îª+Q£¬BÇò²»´øµç£¬A¡¢BÁ¬ÏßÓëµç³¡ÏßƽÐУ®¿ªÊ¼Ê±Á½ÇòÏà¾àL£¬Ôڵ糡Á¦×÷ÓÃÏ£¬AÇò¿ªÊ¼Ô˶¯£¨´ËʱΪ¼ÆʱÁãµã£¬¼´t=0£©£¬ºóÓëBÇò·¢Éú¶ÔÐÄÅöײ£¬Åöײ¹ý³ÌÖÐA¡¢BÁ½Çò×ܶ¯ÄÜÎÞËðʧ£¬ÉèÔÚ¸÷´ÎÅöײ¹ý³ÌÖУ¬A¡¢BÁ½Çò¼äÎÞµçÁ¿×ªÒÆ£¬ÇÒ²»¿¼ÂÇÁ½ÇòÅöײʱ¼ä¼°Á½Çò¼äµÄÍòÓÐÒýÁ¦£¬ÊÔÇó£º
£¨1£©µÚÒ»´ÎÅöײ½áÊø˲¼äA¡¢BÁ½ÇòµÄËٶȸ÷Ϊ¶à´ó£¿
£¨2£©´Ó¼ÆʱÁãµãµ½¼´½«·¢ÉúµÚÈý´ÎÅöײʱËù¾ÀúµÄ×Üʱ¼äΪ¶àÉÙ£¿
£¨3£©ÈôÒªÇóAÔÚÔ˶¯¹ý³ÌÖжÔ×ÀÃæʼÖÕÎÞѹÁ¦ÇҸպò»À뿪ˮƽ×ÀÃ棨v=0ʱ¿Ì³ýÍ⣩£¬¿ÉÒÔÔÚˮƽÃæÄÚ¼ÓÒ»Óëµç³¡Õý½»µÄ´Å³¡£®Çëд³ö´Å³¡B£¨t£©Óëʱ¼ätµÄº¯Êý¹Øϵ£®
£¨1£©µÚÒ»´ÎÅöײ½áÊø˲¼äA¡¢BÁ½ÇòµÄËٶȸ÷Ϊ¶à´ó£¿
£¨2£©´Ó¼ÆʱÁãµãµ½¼´½«·¢ÉúµÚÈý´ÎÅöײʱËù¾ÀúµÄ×Üʱ¼äΪ¶àÉÙ£¿
£¨3£©ÈôÒªÇóAÔÚÔ˶¯¹ý³ÌÖжÔ×ÀÃæʼÖÕÎÞѹÁ¦ÇҸպò»À뿪ˮƽ×ÀÃ棨v=0ʱ¿Ì³ýÍ⣩£¬¿ÉÒÔÔÚˮƽÃæÄÚ¼ÓÒ»Óëµç³¡Õý½»µÄ´Å³¡£®Çëд³ö´Å³¡B£¨t£©Óëʱ¼ätµÄº¯Êý¹Øϵ£®
·ÖÎö£º£¨1£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öAÇòµÄ¼ÓËٶȣ¬ÓÉËÙ¶ÈλÒƹ«Ê½Çó³öAÇòÓëBÇòÅöײǰµÄËٶȣ®ÓÉÓÚÅöײ¹ý³ÌÖÐA¡¢BÁ½Çò×ܶ¯ÄÜÎÞËðʧ£¬½»»»Ëٶȣ®
£¨2£©¸ù¾ÝËٶȹ«Ê½Çó³öµÚÒ»´ÎÅöײʱ¼ä£®µÚÒ»´ÎÅöºó£¬AÇò×·¼°BÇò£¬µ±Î»ÒÆÏàµÈʱ£¬·¢ÉúµÚ¶þÅöײ£¬ÓÉλÒÆÏàµÈÇó³öµÚ¶þ´ÎÅöײʱ¼ä£®Í¬ÀíÇó½âµÚÈý´ÎÅöײʱ¼ä£®
£¨3£©ÒªÇóAÔÚÔ˶¯¹ý³ÌÖжÔ×ÀÃæʼÖÕÎÞѹÁ¦ÇҸպò»À뿪ˮƽ×ÀÃ棬ÂåÂ××ÈÁ¦ÓëÖØÁ¦Æ½ºâ£®²ÉÓùéÄÉ·¨·Ö±ð·ÖÎö´Ó¼ÆʱÁãµãµ½¼´½«·¢ÉúµÚ1´ÎÅöײÕâ¶Î¹ý³Ì¡¢µÚ1´ÎÅöײµ½¼´½«·¢ÉúµÚ2´ÎÅöײÕâ¶Î¹ý³Ì¡¢´ÓµÚ2´ÎÅöײµ½¼´½«·¢ÉúµÚ3´ÎÅöײÕâ¶Î¹ý³Ì¡ÓÉAÇòÊúÖ±·½ÏòÁ¦Æ½ºâµÃµ½B£¨t£©Óëʱ¼ätµÄ¹Øϵʽ£¬×ܽá³ö¹æÂÉ£¬ÔÙÇó´Å³¡B£¨t£©Óëʱ¼ätµÄº¯Êý¹Øϵ£®
£¨2£©¸ù¾ÝËٶȹ«Ê½Çó³öµÚÒ»´ÎÅöײʱ¼ä£®µÚÒ»´ÎÅöºó£¬AÇò×·¼°BÇò£¬µ±Î»ÒÆÏàµÈʱ£¬·¢ÉúµÚ¶þÅöײ£¬ÓÉλÒÆÏàµÈÇó³öµÚ¶þ´ÎÅöײʱ¼ä£®Í¬ÀíÇó½âµÚÈý´ÎÅöײʱ¼ä£®
£¨3£©ÒªÇóAÔÚÔ˶¯¹ý³ÌÖжÔ×ÀÃæʼÖÕÎÞѹÁ¦ÇҸպò»À뿪ˮƽ×ÀÃ棬ÂåÂ××ÈÁ¦ÓëÖØÁ¦Æ½ºâ£®²ÉÓùéÄÉ·¨·Ö±ð·ÖÎö´Ó¼ÆʱÁãµãµ½¼´½«·¢ÉúµÚ1´ÎÅöײÕâ¶Î¹ý³Ì¡¢µÚ1´ÎÅöײµ½¼´½«·¢ÉúµÚ2´ÎÅöײÕâ¶Î¹ý³Ì¡¢´ÓµÚ2´ÎÅöײµ½¼´½«·¢ÉúµÚ3´ÎÅöײÕâ¶Î¹ý³Ì¡ÓÉAÇòÊúÖ±·½ÏòÁ¦Æ½ºâµÃµ½B£¨t£©Óëʱ¼ätµÄ¹Øϵʽ£¬×ܽá³ö¹æÂÉ£¬ÔÙÇó´Å³¡B£¨t£©Óëʱ¼ätµÄº¯Êý¹Øϵ£®
½â´ð£º½â£º£¨1£©AÇòµÄ¼ÓËÙ¶ÈΪa=
ÅöÇ°AµÄËÙ¶ÈΪvA1=
=
£¬ÅöÇ°BµÄËÙ¶ÈΪvB1=0ÓÉÓÚÅöײ¹ý³ÌÖÐA¡¢BÁ½Çò×ܶ¯ÄÜÎÞËðʧ£¬½»»»Ëٶȣ¬ÔòÅöײºóA¡¢BµÄËٶȷֱð
vA1¡ä=0£¬vB1¡ä=vA1=
£®
£¨2£©A¡¢BÇò·¢ÉúµÚÒ»´Î¡¢µÚ¶þ´Î¡¢µÚÈý´ÎµÄÅöײʱ¼ä·Ö±ðΪt1¡¢t2¡¢t3£®
Ôòt1=
=
µÚÒ»´ÎÅöºó£¬¾t2-t1ʱ¼äA¡¢BÁ½Çò·¢ÉúµÚ¶þ´ÎÅöײ£¬ÉèÅöǰ˲¼äA¡¢BÁ½ÇòËÙ¶ÈΪvA2ºÍvB2£¬ÔòÓÐ
vB1¡ä£¨t2-t1£©=
a£¨t2-t1£©2
½âµÃ£¬t2=3t1
vA2=a£¨t2-t1£©=2at1=2vA1=2
£®
vB2=vB1¡ä=
£®
µÚ¶þ´ÎÅöºó˲¼ä£¬A¡¢BÁ½ÇòËٶȷֱðΪ
vA2¡äºÍvB2¡ä£¬¾t3-t2ʱ¼äA¡¢BÁ½Çò·¢ÉúÅöײ£¬²¢ÉèÅöײǰ˲¼äA¡¢BÁ½ÇòËٶȷֱðvA3ºÍvB3
ÔòvA2¡ä=vB2=
£®
vB2¡ä=vA2=2
£®
µ±vB2¡ä£¨t3-t2£©=vA2¡ä£¨t3-t2£©+
a£¨t3-t2£©2·¢ÉúµÚÈý´ÎÅöײ
½âµÃ£¬t3-t2=t2-t1£¬t3=5
£®
£¨3£©¶ÔAÇò£¬ÒªÇóAÔÚÔ˶¯¹ý³ÌÖжÔ×ÀÃæʼÖÕÎÞѹÁ¦ÇҸպò»À뿪ˮƽ×ÀÃ棬ÂåÂ××ÈÁ¦ÓëÖØÁ¦Ç¡ºÃƽºâ£¬µÃ
BQvA=mg£¬µÃB=
£¬AÇòµÄ¼ÓËÙ¶ÈΪ a=
Ôò´ÓAÇò¿ªÊ¼Ô˶¯µ½·¢ÉúµÚ1´ÎÅöײÕâ¶Î¹ý³ÌÖУ¬
B£¨t£©=
=
0£¼t¡Ü
´ÓµÚ1´ÎÅöײµ½·¢ÉúµÚ2´ÎÅöײÕâ¶Î¹ý³ÌÖУ¬
B£¨t£©=
¡Üt¡Ü3
´ÓµÚ2´ÎÅöײµ½·¢ÉúµÚ3´ÎÅöײÕâ¶Î¹ý³ÌÖУ¬
B£¨t£©=
3
¡Üt¡Ü5
´ÓµÚ3´ÎÅöײµ½·¢ÉúµÚ4´ÎÅöײÕâ¶Î¹ý³ÌÖУ¬
B£¨t£©=
5
¡Üt¡Ü7
¡
ÒÔ´ËÀàÍÆ£¬´ÓµÚn´ÎÅöײµ½·¢ÉúµÚn+1´ÎÅöײÕâ¶Î¹ý³ÌÖУ¬
B£¨t£©=
£¨2n-1£©
¡Üt¡Ü£¨2n+1£©
£¨n=1£¬2£¬3£¬¡£©
´ð£º
£¨1£©µÚÒ»´ÎÅöײ½áÊø˲¼äA¡¢BÁ½ÇòµÄËٶȸ÷Ϊ0ºÍ
£®
£¨2£©´Ó¼ÆʱÁãµãµ½¼´½«·¢ÉúµÚÈý´ÎÅöײʱËù¾ÀúµÄ×Üʱ¼äΪ5
£®
£¨3£©´Å³¡B£¨t£©Óëʱ¼ätµÄº¯Êý¹ØϵÊÇ B£¨t£©=
£¨2n-1£©
¡Üt¡Ü£¨2n+1£©
£¨n=1£¬2£¬3£¬¡£©£®
QE |
m |
ÅöÇ°AµÄËÙ¶ÈΪvA1=
2aL |
|
vA1¡ä=0£¬vB1¡ä=vA1=
|
£¨2£©A¡¢BÇò·¢ÉúµÚÒ»´Î¡¢µÚ¶þ´Î¡¢µÚÈý´ÎµÄÅöײʱ¼ä·Ö±ðΪt1¡¢t2¡¢t3£®
Ôòt1=
vA1-0 |
a |
|
µÚÒ»´ÎÅöºó£¬¾t2-t1ʱ¼äA¡¢BÁ½Çò·¢ÉúµÚ¶þ´ÎÅöײ£¬ÉèÅöǰ˲¼äA¡¢BÁ½ÇòËÙ¶ÈΪvA2ºÍvB2£¬ÔòÓÐ
vB1¡ä£¨t2-t1£©=
1 |
2 |
½âµÃ£¬t2=3t1
vA2=a£¨t2-t1£©=2at1=2vA1=2
|
vB2=vB1¡ä=
|
µÚ¶þ´ÎÅöºó˲¼ä£¬A¡¢BÁ½ÇòËٶȷֱðΪ
vA2¡äºÍvB2¡ä£¬¾t3-t2ʱ¼äA¡¢BÁ½Çò·¢ÉúÅöײ£¬²¢ÉèÅöײǰ˲¼äA¡¢BÁ½ÇòËٶȷֱðvA3ºÍvB3
ÔòvA2¡ä=vB2=
|
vB2¡ä=vA2=2
|
µ±vB2¡ä£¨t3-t2£©=vA2¡ä£¨t3-t2£©+
1 |
2 |
½âµÃ£¬t3-t2=t2-t1£¬t3=5
|
£¨3£©¶ÔAÇò£¬ÒªÇóAÔÚÔ˶¯¹ý³ÌÖжÔ×ÀÃæʼÖÕÎÞѹÁ¦ÇҸպò»À뿪ˮƽ×ÀÃ棬ÂåÂ××ÈÁ¦ÓëÖØÁ¦Ç¡ºÃƽºâ£¬µÃ
BQvA=mg£¬µÃB=
mg |
QvA |
QE |
m |
Ôò´ÓAÇò¿ªÊ¼Ô˶¯µ½·¢ÉúµÚ1´ÎÅöײÕâ¶Î¹ý³ÌÖУ¬
B£¨t£©=
mg |
Qat |
m2g |
Q2Et |
|
´ÓµÚ1´ÎÅöײµ½·¢ÉúµÚ2´ÎÅöײÕâ¶Î¹ý³ÌÖУ¬
B£¨t£©=
m2g | ||||
Q2E(t-
|
|
|
´ÓµÚ2´ÎÅöײµ½·¢ÉúµÚ3´ÎÅöײÕâ¶Î¹ý³ÌÖУ¬
B£¨t£©=
m2g | ||||
Q2E(t-2
|
|
|
´ÓµÚ3´ÎÅöײµ½·¢ÉúµÚ4´ÎÅöײÕâ¶Î¹ý³ÌÖУ¬
B£¨t£©=
m2g | ||||
Q2E(t-3
|
|
|
¡
ÒÔ´ËÀàÍÆ£¬´ÓµÚn´ÎÅöײµ½·¢ÉúµÚn+1´ÎÅöײÕâ¶Î¹ý³ÌÖУ¬
B£¨t£©=
m2g | ||||
Q2E(t-n
|
|
|
´ð£º
£¨1£©µÚÒ»´ÎÅöײ½áÊø˲¼äA¡¢BÁ½ÇòµÄËٶȸ÷Ϊ0ºÍ
|
£¨2£©´Ó¼ÆʱÁãµãµ½¼´½«·¢ÉúµÚÈý´ÎÅöײʱËù¾ÀúµÄ×Üʱ¼äΪ5
|
£¨3£©´Å³¡B£¨t£©Óëʱ¼ätµÄº¯Êý¹ØϵÊÇ B£¨t£©=
m2g | ||||
Q2E(t-n
|
|
|
µãÆÀ£º±¾ÌâÊÇСÇòÖÜÆÚÐÔÔ˶¯ÎÊÌ⣬¹Ø¼üÒª²ÉÓùéÄÉ·¨×ܽá¹æÂÉ£¬ÔËÓÃÊýѧ·½·¨Çó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿