ÌâÄ¿ÄÚÈÝ
ÎÐÁ÷Öƶ¯ÊÇ´ÅÐü¸¡ÁгµÔÚ¸ßËÙÔËÐÐʱ½øÐÐÖƶ¯µÄÒ»ÖÖ·½Ê½£¬Ä³Ñо¿ËùÓÃÖƳɵijµºÍ¹ìµÀÄ£ÐÍÀ´¶¨Á¿Ä£Äâ´ÅÐü¸¡ÁгµµÄÎÐÁ÷Öƶ¯¹ý³Ì£®ÈçͼËùʾ£¬Ä£ÐͳµµÄ³µÏá϶˰²×°Óеç´ÅÌúϵͳ£¬µç´ÅÌúϵͳÄÜÔÚÆäÏ·½µÄˮƽ¹ìµÀ£¨¼ä¾àΪL1£©Öеij¤ÎªL1¡¢¿íΪL2µÄ¾ØÐÎÇøÓòÄÚ²úÉúÔÈÇ¿´Å³¡£¬¸Ã´Å³¡µÄ´Å¸ÐӦǿ¶È´óСΪB¡¢·½ÏòÊúÖ±ÏòÏ£®½«³¤´óÓÚL1¡¢¿íΪL2µÄµ¥ÔѾØÐÎÏßȦµÈ¼ä¸ôÆÌÉèÔÚ¹ìµÀÕýÖÐÑ룬Æä¼ä¸ôҲΪL2£®Ã¿¸öÏßȦµÄµç×èΪR£¬µ¼Ïß´ÖϸºöÂÔ²»¼Æ£®ÔÚij´ÎʵÑéÖУ¬Æô¶¯µç´Åϵͳ¿ªÊ¼Öƶ¯ºó£¬µç´ÅÌúϵͳ¸ÕºÃÍêÕû»¬¹ýÁËn¸öÏßȦ£®ÒÑ֪ģÐͳµµÄ×ÜÖÊÁ¿Îªm£¬¿ÕÆø×èÁ¦²»¼Æ£®Çó£º
£¨1£©ÔÚµç´ÅÌúϵͳµÄ´Å³¡È«²¿½øÈëÈÎÒâÒ»¸öÏßȦµÄ¹ý³ÌÖУ¬Í¨¹ýÏßȦµÄµçºÉÁ¿q£»
£¨2£©ÔÚɲ³µ¹ý³ÌÖУ¬ÏßȦËù²úÉúµÄ×ܵçÈÈQ£»
£¨3£©µç´ÅÌúϵͳ¸Õ½øÈëµÚk£¨k£¼n£©¸öÏßȦʱ£¬ÏßȦÖеĵ繦ÂÊP£®
£¨1£©ÔÚµç´ÅÌúϵͳµÄ´Å³¡È«²¿½øÈëÈÎÒâÒ»¸öÏßȦµÄ¹ý³ÌÖУ¬Í¨¹ýÏßȦµÄµçºÉÁ¿q£»
£¨2£©ÔÚɲ³µ¹ý³ÌÖУ¬ÏßȦËù²úÉúµÄ×ܵçÈÈQ£»
£¨3£©µç´ÅÌúϵͳ¸Õ½øÈëµÚk£¨k£¼n£©¸öÏßȦʱ£¬ÏßȦÖеĵ繦ÂÊP£®
·ÖÎö£º£¨1£©¸ù¾Ý·¨ÀµÚµç´Å¸ÐÓ¦¶¨Âɺͱպϵç·ŷķ¶¨ÂÉÇó³öƽ¾ùµçÁ÷µÄ´óС£¬¸ù¾Ýq=ItÇó³öͨ¹ýµÄµçÁ¿£®
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢°²ÅàÁ¦¹«Ê½¡¢Çиî²úÉúµÄ¸ÐÓ¦µç¶¯Êƹ«Ê½ºÍ±ÕºÏµç·ŷķ¶¨ÂÉ£¬²ÉÓÃ΢·ÖµÄ·½·¨Çó³ö³õËٶȵĴóС£¬ÔÙ¸ù¾ÝÄÜÁ¿Êغ㶨ÂÉÇó³öÏßȦËù²úÉúµÄ×ܵçÈÈ£®
£¨3£©¸ù¾Ý΢·Ö·¨Çó³öµÄËٶȱ仯Á¿£¬µÃ³öµç´ÅÌúϵͳ¸Õ½øÈëµÚk£¨k£¼n£©¸öÏßȦʱËٶȵı仯Á¿£¬´Ó¶øÇó³ö´ËʱµÄËٶȴóС£¬´Ó¶ø¸ù¾ÝP=
Çó³öÏßȦÖеĵ繦ÂÊ
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢°²ÅàÁ¦¹«Ê½¡¢Çиî²úÉúµÄ¸ÐÓ¦µç¶¯Êƹ«Ê½ºÍ±ÕºÏµç·ŷķ¶¨ÂÉ£¬²ÉÓÃ΢·ÖµÄ·½·¨Çó³ö³õËٶȵĴóС£¬ÔÙ¸ù¾ÝÄÜÁ¿Êغ㶨ÂÉÇó³öÏßȦËù²úÉúµÄ×ܵçÈÈ£®
£¨3£©¸ù¾Ý΢·Ö·¨Çó³öµÄËٶȱ仯Á¿£¬µÃ³öµç´ÅÌúϵͳ¸Õ½øÈëµÚk£¨k£¼n£©¸öÏßȦʱËٶȵı仯Á¿£¬´Ó¶øÇó³ö´ËʱµÄËٶȴóС£¬´Ó¶ø¸ù¾ÝP=
(BL1vk-1)2 |
R |
½â´ð£º½â£º£¨1£©ÔÚµç´Åϵͳ»¬½øÏß¿òÉÏ·½¡÷tµÄ¹ý³ÌÖУ¬Ïß¿òÖвúÉúµÄƽ¾ù¸ÐÓ¦µç¶¯ÊÆ
=
ƽ¾ùµçÁ÷
=
Ïß¿òµÄµçºÉÁ¿q=
¡÷t=
£®
£¨2£©µç´ÅϵͳÔÚÏß¿òÉÏ·½ÈÎһʱ¿ÌÒÔËÙ¶ÈvÔ˶¯Ê±£¬¾ùÓÐÒ»¸öL1±ßÔڴų¡ÖÐÇиî´Å¸ÐÏßÔ˶¯£¬µç´ÅÌú»áÊܵ½Ïß¿ò×÷ÓõÄ×èÁ¦£¬´óСµÈÓÚÏß¿òËùÊܵݲÅàÁ¦£®
F=BIL1£¬I=
£¬F=
´ÅÌúϵͳ¼õËÙÔ˶¯Ê±µÄ˲ʱ¼ÓËÙ¶Èa=
£®
¾¹ý¼«¶ÌµÄʱ¼ä¡÷t£¬ËٶȼõС¡÷v£¬Ô˶¯µÄλÒÆ¡÷x
a¡÷t=
¡÷t£¬
¼´¡÷v=
¡÷v=
¡÷x
¼´ÓÐv0=
2nL2£¬ÆäÖÐv0Ϊ¿ªÊ¼É²³µÊ±µÄ³õËÙ¶È
ÓÉÄÜÁ¿Êغ㶨ÂÉÖª£¬Ïß¿òÖвúÉúµÄ×ÜÈÈÁ¿Q=
mv02
´úÈëµÃ£¬Q=
£®
£¨3£©µç´ÅÌú¸Õ´©³öµÚ£¨k-1£©¸ö´Å³¡ÇøÓòʱ£¬ËÙ¶ÈΪvk-1£¬
v0-vk-1=
?2(k-1)L2
µÃvk-1=
?2(n-k+1)L2
ÏßȦµÄµç¹¦ÂÊP=
ÔòP=
?4(n-k+1)2L22£®
´ð£º£¨1£©ÔÚµç´ÅÌúϵͳµÄ´Å³¡È«²¿½øÈëÈÎÒâÒ»¸öÏßȦµÄ¹ý³ÌÖУ¬Í¨¹ýÏßȦµÄµçºÉÁ¿Îª
£®
£¨2£©ÔÚɲ³µ¹ý³ÌÖУ¬ÏßȦËù²úÉúµÄ×ܵçÈÈΪ
£®
£¨3£©ÏßȦÖеĵ繦ÂÊ
?4(n-k+1)2L22£®
. |
E |
Bl1l2 |
¡÷t |
ƽ¾ùµçÁ÷
. |
I |
| ||
R |
Ïß¿òµÄµçºÉÁ¿q=
. |
I |
BL1L2 |
R |
£¨2£©µç´ÅϵͳÔÚÏß¿òÉÏ·½ÈÎһʱ¿ÌÒÔËÙ¶ÈvÔ˶¯Ê±£¬¾ùÓÐÒ»¸öL1±ßÔڴų¡ÖÐÇиî´Å¸ÐÏßÔ˶¯£¬µç´ÅÌú»áÊܵ½Ïß¿ò×÷ÓõÄ×èÁ¦£¬´óСµÈÓÚÏß¿òËùÊܵݲÅàÁ¦£®
F=BIL1£¬I=
BLv1 |
R |
B2L2v1 |
R |
´ÅÌúϵͳ¼õËÙÔ˶¯Ê±µÄ˲ʱ¼ÓËÙ¶Èa=
B2L12v |
mR |
¾¹ý¼«¶ÌµÄʱ¼ä¡÷t£¬ËٶȼõС¡÷v£¬Ô˶¯µÄλÒÆ¡÷x
a¡÷t=
B2L12v |
mR |
¼´¡÷v=
B2L12¡÷x |
mR |
B2L12 |
mR |
¼´ÓÐv0=
B2L12 |
mR |
ÓÉÄÜÁ¿Êغ㶨ÂÉÖª£¬Ïß¿òÖвúÉúµÄ×ÜÈÈÁ¿Q=
1 |
2 |
´úÈëµÃ£¬Q=
2B4L14n2L22 |
mR2 |
£¨3£©µç´ÅÌú¸Õ´©³öµÚ£¨k-1£©¸ö´Å³¡ÇøÓòʱ£¬ËÙ¶ÈΪvk-1£¬
v0-vk-1=
B2L12 |
mR |
µÃvk-1=
B2L12 |
mR |
ÏßȦµÄµç¹¦ÂÊP=
(BL1vk-1)2 |
R |
ÔòP=
B6L16 |
m2R3 |
´ð£º£¨1£©ÔÚµç´ÅÌúϵͳµÄ´Å³¡È«²¿½øÈëÈÎÒâÒ»¸öÏßȦµÄ¹ý³ÌÖУ¬Í¨¹ýÏßȦµÄµçºÉÁ¿Îª
BL1L2 |
R |
£¨2£©ÔÚɲ³µ¹ý³ÌÖУ¬ÏßȦËù²úÉúµÄ×ܵçÈÈΪ
2B4L14n2L22 |
mR2 |
£¨3£©ÏßȦÖеĵ繦ÂÊ
B6L16 |
m2R3 |
µãÆÀ£º±¾ÌâÎïÀíÇé¾³ºÜУ¬µ«ÈÔÊdz£¹æÎïÀíÄ£ÐÍ£¬ÀàËÆÓڴų¡²»¶¯ÏßȦÔÚ¶¯µÄÌâÐÍ£®£¨2£©£¨3£©ÎʶÔѧÉúµÄÄÜÁ¦ÒªÇó½Ï¸ß£¬Ðè²ÉÓÃ΢·ÖµÄ˼Ïë½øÐнâ¾ö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿