ÌâÄ¿ÄÚÈÝ
14£®»ØÐý¼ÓËÙÆ÷ÊÇÓÃÀ´¼ÓËÙ´øµçÁ£×ÓµÄ×°Öã¬ÈçͼΪ»ØÐý¼ÓËÙÆ÷µÄʾÒâͼ£®D1¡¢D2ÊÇÁ½¸öÖпյÄÂÁÖÆ°ëÔ²ÐνðÊô±âºÐ£¬ÔÚÁ½¸öDÐκÐÕýÖм俪ÓÐÒ»ÌõÏÁ·ì£¬Á½¸öDÐκнÓÔÚ¸ßƵ½»Á÷µçÔ´ÉÏ£®ÔÚD1ºÐÖÐÐÄA´¦ÓÐÁ£×ÓÔ´£¬²úÉúµÄ´øÕýµçÁ£×ÓÔÚÁ½ºÐÖ®¼ä±»µç³¡¼ÓËÙºó½øÈëD2ºÐÖУ®Á½¸öDÐκд¦ÓÚÓëºÐÃæ´¹Ö±µÄÔÈÇ¿´Å³¡ÖУ¬´øµçÁ£×ÓÔڴų¡Á¦µÄ×÷ÓÃÏÂ×öÔÈËÙÔ²ÖÜÔ˶¯£¬¾¹ý°ë¸öÔ²Öܺó£¬Ôٴε½´ïÁ½ºÐ¼äµÄÏÁ·ì£¬¿ØÖƽ»Á÷µçÔ´µçѹµÄÖÜÆÚ£¬±£Ö¤´øµçÁ£×Ó¾¹ýÏÁ·ìʱÔٴα»¼ÓËÙ£®Èç´Ë£¬Á£×ÓÔÚ×öÔ²ÖÜÔ˶¯µÄ¹ý³ÌÖÐÒ»´ÎÒ»´ÎµØ¾¹ýÏÁ·ì£¬Ò»´ÎÒ»´ÎµØ±»¼ÓËÙ£¬ËÙ¶ÈÔ½À´Ô½´ó£¬Ô˶¯°ë¾¶Ò²Ô½À´Ô½´ó£¬×îºóµ½´ïDÐκеıßÔµ£¬ÑØÇÐÏß·½ÏòÒÔ×î´óËٶȱ»µ¼³ö£®ÒÑÖª´øµçÁ£×ӵĵçºÉÁ¿Îªq£¬ÖÊÁ¿Îªm£¬¼ÓËÙʱÏÁ·ì¼äµçѹ´óСºãΪU£¬´Å³¡µÄ´Å¸ÐӦǿ¶ÈΪB£¬DÐκеİ뾶ΪR£¬ÏÁ·ìÖ®¼äµÄ¾àÀëΪd£®Éè´ÓÁ£×ÓÔ´²úÉúµÄ´øµçÁ£×ӵijõËÙ¶ÈΪÁ㣬²»¼ÆÁ£×ÓÊܵ½µÄÖØÁ¦£¬Ç󣺣¨1£©´øµçÁ£×ÓÄܱ»¼ÓËÙµÄ×î´ó¶¯ÄÜEk£»
£¨2£©´øµçÁ£×ÓÔÚD2ºÐÖеÚn¸ö°ëÔ²µÄ°ë¾¶£»
£¨3£©Èô´øµçÁ£×ÓÊø´Ó»ØÐý¼ÓËÙÆ÷Êä³öʱÐγɵĵÈЧµçÁ÷ΪI£¬Çó´Ó»ØÐý¼ÓËÙÆ÷Êä³öµÄ´øµçÁ£×ÓµÄƽ¾ù¹¦ÂÊ$\overline P$£®
·ÖÎö £¨1£©¸ù¾ÝqvB=m$\frac{{v}^{2}}{R}$Öª£¬µ±R×î´óʱ£¬ËÙ¶È×î´ó£¬Çó³ö×î´óËٶȣ¬¸ù¾ÝEK=$\frac{1}{2}$mv2Çó³öÁ£×ÓµÄ×î´ó¶¯ÄÜ£®
£¨2£©Á£×Ó±»¼ÓËÙÒ»´ÎËù»ñµÃµÄÄÜÁ¿ÎªqU£¬Çó³öµÚn´Î¼ÓËÙºóµÄ¶¯ÄÜEKn=$\frac{1}{2}$mvn2=$\frac{{q}^{2}{B}^{2}{R}_{n}^{2}}{2m}$=£¨2n-1£©qU£¬½ø¶ø¿ÉÇó³öµÚn¸ö°ëÔ²µÄ°ë¾¶£»
£¨3£©¸ù¾ÝµçÁ÷µÄ¶¨ÒåʽI=$\frac{Q}{t}$ºÍQ=NqÒÔ¼°P=$\frac{N•\frac{1}{2}m{v}^{2}}{t}$£¬¼´¿ÉÇó½â£®
½â´ð ½â£º£¨1£©Á£×ÓÔÚDÐκÐÄÚ×öÔ²ÖÜÔ˶¯£¬¹ìµÀ°ë¾¶´ïµ½×î´óʱ±»Òý³ö£¬¾ßÓÐ×î´ó¶¯ÄÜ£®
Éè´ËʱµÄËÙ¶ÈΪv£¬ÓУºqvB=m$\frac{{v}^{2}}{R}$
¿ÉµÃv=$\frac{qBR}{m}$
Á£×ÓµÄ×î´ó¶¯ÄÜEk=$\frac{1}{2}$mv2=$\frac{{q}^{2}{B}^{2}{R}^{2}}{2m}$
£¨2£©Á£×Ó±»¼ÓËÙÒ»´ÎËù»ñµÃµÄÄÜÁ¿ÎªqU£¬Á£×ÓÔÚD2ºÐÖб»µÚn´Î¼ÓËÙºóµÄ¶¯ÄÜΪ
EKn=$\frac{1}{2}$mvn2=$\frac{{q}^{2}{B}^{2}{R}_{n}^{2}}{2m}$=£¨2n-1£©qU£¬
Òò´ËµÚn¸ö°ëÔ²µÄ°ë¾¶Rn=$\frac{1}{Bq}\sqrt{2£¨2n-1£©qmU}$£»
£¨3£©´øµçÁ£×ÓÖÊÁ¿Îªm£¬µçºÉÁ¿Îªq£¬´øµçÁ£×ÓÀ뿪¼ÓËÙÆ÷ʱËٶȴóСΪv£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÖª£ºqvB=m$\frac{{v}^{2}}{R}$¡¢Û
´øµçÁ£×ÓÔ˶¯µÄ»ØÐýÖÜÆÚΪ£ºT=$\frac{2¦ÐR}{v}$=$\frac{2¦Ðm}{qB}$¡¢Ü
ÓÉ»ØÐý¼ÓËÙÆ÷¹¤×÷ÔÀí¿ÉÖª£¬½»±äµçÔ´µÄƵÂÊÓë´øµçÁ£×Ó»ØÐýƵÂÊÏàͬ£¬ÓÉÖÜÆÚTÓëƵÂÊfµÄ¹Øϵ¿ÉµÃ£ºf=$\frac{1}{T}$¡¢Ý
ÉèÔÚtʱ¼äÄÚÀ뿪¼ÓËÙÆ÷µÄ´øµçÁ£×ÓÊýΪN£¬Ôò´øµçÁ£×ÓÊø´Ó»ØÐý¼ÓËÙÆ÷Êä³öʱµÄƽ¾ù¹¦ÂÊP=$\frac{N•\frac{1}{2}m{v}^{2}}{t}$¡¢Þ
Êä³öʱ´øµçÁ£×ÓÊøµÄµÈЧµçÁ÷Ϊ£ºI=$\frac{Nq}{t}$¡¢ß
ÓÉÉÏÊö¸÷ʽµÃ$\overline{P}$=$\frac{¦ÐBI{R}^{2}}{T}$=$\frac{{B}^{2}{R}^{2}Iq}{2m}$£»
´ð£º£¨1£©´øµçÁ£×ÓÄܱ»¼ÓËÙµÄ×î´ó¶¯ÄÜ$\frac{{q}^{2}{B}^{2}{R}^{2}}{2m}$£»
£¨2£©´øµçÁ£×ÓÔÚD2ºÐÖеÚn¸ö°ëÔ²µÄ°ë¾¶$\frac{1}{Bq}\sqrt{2£¨2n-1£©qmU}$£»
£¨3£©Èô´øµçÁ£×ÓÊø´Ó»ØÐý¼ÓËÙÆ÷Êä³öʱÐγɵĵÈЧµçÁ÷ΪI£¬Çó´Ó»ØÐý¼ÓËÙÆ÷Êä³öµÄ´øµçÁ£×ÓµÄƽ¾ù¹¦ÂÊ$\frac{{B}^{2}{R}^{2}Iq}{2m}$£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀ»ØÐý¼ÓËÙÆ÷ÀûÓôų¡Æ«×ªºÍµç³¡¼ÓËÙʵÏÖ¼ÓËÙÁ£×Ó£¬Á£×ÓÔڴų¡ÖÐÔ˶¯µÄÖÜÆںͽ»Á÷µçµÄÖÜÆÚÏàµÈ£¬×¢ÒâµÚ3ÎÊÌ⣬½¨Á¢ÕýÈ·µÄÎïÀíÄ£ÐÍÊǽâÌâµÄ¹Ø¼ü£®
A£® | Êܵ½µÄÊǾ²Ä¦²ÁÁ¦ | B£® | Êܵ½µÄÊÇ»¬¶¯Ä¦²ÁÁ¦ | ||
C£® | Ħ²ÁÁ¦´óÓÚ»ð¾æÖØÁ¦ | D£® | Ħ²ÁÁ¦µÈÓÚ»ð¾æÖØÁ¦ |
A£® | 0.4eV | B£® | 1.7eV | C£® | 2.1eV | D£® | 2.5eV |
A£® | 2¦Ød | B£® | $\frac{¦Ød}{2¦È}$ | C£® | $\frac{¦Ød}{¦È}$ | D£® | $\frac{¦Ød}{£¨¦Ð-¦È£©}$ |
A£® | ¼õÉÙ | B£® | Ôö¼Ó | C£® | ²»±ä | D£® | ÎÞ·¨È·¶¨ |
A£® | ¼×ÔÚt1ʱ¿Ì¸Ä±äÔ˶¯·½Ïò | B£® | ÔÚt2ʱ¿Ì£¬¼×ÒÒÏà¾à×îÔ¶ | ||
C£® | ÔÚt3ʱ¿Ì£¬¼×ÒÒλÒÆÏàͬ | D£® | ÔÚt3ʱ¿Ì£¬¼×ÒÒÏà¾à×îÔ¶ |