题目内容

如图所示,一束电子从y轴上的M点以平行于x轴的方向射入第一象限区域,射入的速度大小为v0,电子的质量为m,电荷量为e.为使电子束通过x轴上N点,可在第一象限的某区域加一个沿y轴正方向的匀强电场,此电场的电场强度为E.电场区域沿y轴正方向为无限长,沿x轴方向的宽度为s,且已知
OM
=L,
ON
=2s.求该电场的左边界与点N的距离.
分析:若电子在离开电场之前已经到达N点,结合粒子在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,结合运动学公式求出电场的左边界与点N的距离.
若电子在离开电场之后做一段匀速直线运动到达N点,则电子先做类平抛运动,出电场后做匀速直线运动,结合运动学公式求出电场的左边界与点N的距离.
解答:解:电子进入电场后沿x轴方向做匀速直线运动,沿y轴方向做匀加速直线运动,由牛顿第二定律得电子运动的加速度a大小为a=
eE
m

设该电场的左边界与点N之间的距离为d,电子在电场中的运动时间为t.则可以分为两种情况讨论:
(1)若电子在离开电场之前已经到达N点,如图所示,即当d≤s时,电子进入电场后在x轴方向的位移为d,在y轴方向的位移为L,根据运动学规律,有
d=v0t,L=
1
2
at2=
eE
2m
t2
    ②
解得d=
2mv02L
eE
         ③
(2)若电子在离开电场之后做一段匀速直线运动到达N点,如图所示,即当s<d≤2时,电子进入电场后在x方向的位移为s,设在y轴方向的位移为h,则
s=v0t,h=
1
2
?
eE
m
t2
.④
离开电场后电子做匀速直线运动,设离开电场时的速度方向与轴的夹角为θ
tanθ=
at
v0
=
eEs
mv02
                ⑤
则根据几何关系有tanθ=
L-h
d-s
 ⑥
由以上两式,解得d=
mv02L
Ees
+
s
2
    ⑦

答:该电场的左边界与点N的距离d=
2mv02L
eE
d=
mv02L
Ees
+
s
2
点评:解决本题的关键分析清楚粒子的运动规律,结合牛顿第二定律和运动学公式进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网