题目内容

【题目】如图所示,不可伸长的轻绳通过定滑轮将物块甲、乙(均可视为质点)连接,物块甲套在固定的竖直光滑杆上,用外力使两物块静止,轻绳与竖直方向夹角,然后撤去外力,甲、乙两物块从静开始运动,物块甲恰能上升到最高点P,P点与滑轮上缘O在同一水平线上,甲、乙两物块质量分别为m、M,,重力加速度为g,不计空气阻力,不计滑轮的大小和摩擦。设物块甲上升到最高点P时加速度为a,则下列说法正确的是(

A. M=2m

B. M=3m

C. a=g

D. a=0

【答案】AC

【解析】QP间的距离为h,OQ间的绳长;则乙下降的高度为则根据机械能守恒定律可知,mgh=Mgh′;解得:M=2m;故A正确,B错误。甲上升到最高点P时。由于不受摩擦力,所以在竖直方向上只受重力,水平方向上弹力与绳子的拉力平衡,因此甲的加速度为g,故C正确,D错误。故选AC。

练习册系列答案
相关题目

【题目】某国际天文研究小组观测到了一组双星系统,它们绕二者连线上的某点做匀速圆周运动,双星系统中质量较小的星体能吸食质量较大的星体的表面物质,达到质量转移的目的.根据大爆炸宇宙学可知,双星间的距离在缓慢增大,假设星体的轨道近似为圆,则在该过程中(  )

A. 双星做圆周运动的角速度不断减小

B. 双星做圆周运动的角速度不断增大

C. 质量较大的星体做圆周运动的轨道半径减小

D. 质量较大的星体做圆周运动的轨道半径增大

【答案】AD

【解析】试题分析:双星绕两者连线的一点做匀速圆周运动,由相互之间万有引力提供向心力,根据万有引力定律、牛顿第二定律和向心力进行分析.

解:AB、设体积较小的星体质量为m1,轨道半径为r1,体积大的星体质量为m2,轨道半径为r2.双星间的距离为L.转移的质量为△m

根据万有引力提供向心力对m1=m1+△mω2r1… ①

m2=m2﹣△mω2r2… ②

①②得:ω=,总质量m1+m2不变,两者距离L增大,则角速度ω变小.故A正确、B错误.

CD、由式可得,把ω的值代入得:

因为,L增大,故r2增大.即质量较大的星体做圆周运动的轨道半径增大,故C错误、D正确.

故选:AD

【点评】本题是双星问题,要抓住双星系统的条件:角速度与周期相同,运用牛顿第二定律采用隔离法进行研究.

型】单选题
束】
38

【题目】如图所示,一匀强电场的电场线平行于xOy平面,电场强度大小为ExOy平面上有一椭圆,椭圆的长轴在x轴上,EF两点为椭圆的两个焦点,AB是椭圆的短轴,椭圆的一端过O点,则下列说法正确的是(  )

A. 在椭圆上,OC两点间电势差一定最大

B. 在椭圆上,AB两点间电势差可能最大

C. 一个点电荷从E点运动到椭圆上任意一点再运动到F点,电场力做功可能为零

D. 一个点电荷从O点运动到A点与从B点运动到C点,电场力做功一定相同

【题目】如图所示,光滑水平面上一质量为M、长为L的木板右端靠竖直墙壁.质量为m的小滑块(可视为质点)以水平速度v0滑上木板的左端,滑到木板的右端时速度恰好为零.

(1)求小滑块与木板间的摩擦力大小;

(2)现小滑块仍以水平速度v0从木板的右端向左滑动,求小滑块在木板上的滑行距离.

【答案】(1) (2)

【解析】试题分析:对小物块进行分析,根据动能定理,小滑块与木板间的摩擦力大小;小滑块从右端向左滑动时,由动理守恒和能量守恒可求小滑块在木板上的滑行距离。

(1)对物块根据动能定理得

(2)对滑块与木板组成的系统,设两者最后的共同速度为v1

根据动量守恒定律得

设小滑块相对木板滑行的距离为d,根据能量守恒定律得

联立得

型】解答
束】
45

【题目】以下说法正确的是________

A.某物质的密度为ρ,其分子的体积为V0,分子的质量为m,则

B.在装满水的玻璃杯内,可以不断地轻轻投放一定数量的大头针,水也不会流出,这是由于大头针填充了水分子间的空隙

C.在油膜法粗测分子直径的实验中,把油分子看成球形,是物理学中的一个理想化模型,因为分子并不真的是球形

D.物质是由大量分子组成的,在这里的分子是组成物质的分子、原子、离子的统称

E.玻璃管道裂口放在火上烧熔,它的尖端就变圆,是因为熔化的玻璃在表面张力的作用下,表面要收缩到最小的缘故

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网