题目内容
【题目】有a、b、c、d四颗地球卫星,a还未发射,在地球赤道上随地球表面一起转动,b处于地面附近近地轨道上正常运行,c是地球同步卫星,d是高空探测卫星.各卫星排列位置如图,则有( )
A. a的向心加速度等于重力加速度g
B. 在相同时间内b转过的弧长最短
C. 在4h内c转过的圆心角是π/3
D. d的运动周期一定是30h
【答案】C
【解析】同步卫星的周期与地球自转周期相同,角速度也相同,则知a与c的角速度相同,由a=ω2r可知,c的向心加速度比a的大.根据可得: ,可知卫星的轨道半径越大,向心加速度越小,c同步卫星的轨道半径高于b卫星的轨道半径,则c同步卫星的向心加速度小于b的向心加速度,而b的向心加速度约为g,故知a的向心加速度小于重力加速度g,故A错误;由,解得: ,卫星的半径越大,线速度越小,所以b的线速度最大,在相同时间内转过的弧长最长,故B错误;c是地球同步卫星,周期是24h,则c在4h内转过的圆心角是,故C正确;由开普勒第三定律: 可知,卫星的半径越大,周期越大,所以d的运动周期大于c的周期24h,但不一定是30h,故D错误。所以C正确,ABD错误。
练习册系列答案
相关题目