题目内容
2013年12月10日21时20分,嫦娥三号实施变轨控制,由距月面平均高度约100千米的环月轨道,成功进入近月点高度约15千米、远月点高度约100千米的椭圆轨道.并于12月14日21时11分成功实施软着陆,如图所示,a为椭圆轨道的远月点,b为椭圆轨道的近月点,则下列说法正确的是( )
A、从a点到b点的过程中,“嫦娥三号”受到的月球引力减小 | B、从a点到b点过程中,月球引力对“嫦娥三号”做正功 | C、从a点到b点过程中,“嫦娥三号”飞行的线速度减小 | D、从a点到b点过程中,“嫦娥三号”与月球系统的引力势能减少 |
练习册系列答案
相关题目
如图,带有一白点的黑色圆盘,可绕过其中心,垂直于盘面的轴匀速转动,每秒沿顺时针方向旋转30圈.在暗室中用每秒闪光31次的频闪光源照射圆盘,观察到白点每秒沿( )
A、顺时针旋转31圈 | B、逆时针旋转31圈 | C、顺时针旋转1圈 | D、逆时针旋转1圈 |
设地球自转周期为T,质量为M,引力常量为G,假设地球可视为质量均匀分布的球体,半径为R.同一物体在南极和赤道水平面上静止时所受到的支持力之比为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
如图为嫦娥三号登月轨迹示意图.图中M点为环地球运动的近地点,N为环月球运动的近月点.a为环月运行的圆轨道,b为环月球运动的椭圆轨道,下列说法中正确的是( )
A、嫦娥三号在环地球轨道上的运行速度大于11.2km/s | B、嫦娥三号在M点进入地月转移轨道时应点火加速 | C、设嫦娥三号在圆轨道a上经过N点时的加速度为a1,在椭圆轨道b上经过N点时的加速度为a2,则a1>a2 | D、嫦娥三号在圆轨道a上的机械能小于在椭圆轨道b上的机械能 |
科学家经过深入观测研究,发现月球正逐渐离我们远去,并且将越来越暗.有地理学家观察了现存的几种鹦鹉螺化石,发现其贝壳上的波状螺纹具有树木年轮一样的功能,螺纹分许多隔,每隔上波状生长线在30条左右,与现代农历一个月的天数完全相同.观察发现,鹦鹉螺的波状生长线每天长一条,每月长一隔.研究显示,现代鹦鹉螺的贝壳上,每隔生长线是30条,中生代白垩纪是22条,侏罗纪是18条,奥陶纪是9条.已知地球表面的重力加速度为10m/s.地球半径为6400kin,现代月球到地球的距离约为38万公里.始终将月球绕地球的运动视为圆周轨道,由以上条件可以估算奥陶纪月球到地球的距离约为( )
A、8.4×108m | B、1.7×108m | C、1.7×107m | D、8.4×107m |
北京时间2005年7月4日下午,美国探测器成功撞击“坦普尔一号”彗星,并投入彗星的怀抱,实现了人类历史上第一次对彗星的“大碰撞”,如图所示.设“坦普尔一号”彗星绕太阳运行的轨道是一椭圆,其运行周期为5.74年,则下列说法中正确的是( )
A、探测器的最小发射速度为7.9km/s | B、“坦普尔一号”彗星运动至近日点处的加速度大于远日点处的加速度 | C、“坦普尔一号”彗星运动至近日点处的线速度小于远日点处的线速度 | D、探测器运行的周期小于5.74年 |
已知地球半径为R,质量为M,自转角速度为ω,万有引力恒量为G,地球同步卫星距地面高度为h,则( )
A、地面赤道上物体随地球自转运动的线速度为ωR | ||||
B、地球同步卫星的运行速度为ωh | ||||
C、地球近地卫星做匀速圆周运动的线速度为
| ||||
D、地球近地卫星做匀速圆周运动的周期大于
|
“嫦娥三号”月球探测器与“嫦娥一号”和“嫦娥二号”绕月飞行不同,“嫦娥三号”实现了落月目标.“嫦娥三号”发射升空后,着陆器携带巡视器,经过奔月、环月最后着陆于月球表面,由巡视器(月球车)进行巡视探测.假设月球的半径为R,月球表面的重力加速度为地球表面重力加速度的
,“嫦娥三号”月球探测器的总质量为m,“环月”运动过程可近似为匀速圆周运动,那么在“环月”运动过程中它的动能可能为( )
1 |
6 |
A、
| ||
B、
| ||
C、
| ||
D、
|
我国于2013年12月发射了“嫦娥三号”卫星,该卫星在距月球表面H处的环月轨道 I上做匀速圆周运动,其运行的周期为T;随后嫦娥三号在该轨道上A点采取措施,降至近月点高度为h的椭圆轨道 II上,如图所示.若以R表示月球的半径,忽略月球自转及地球对卫星的影响.则下述判断正确的是( )
A、月球的质量为
| ||||
B、月球的第一宇宙速度为
| ||||
C、“嫦娥三号”在环月轨道Ⅰ上需加速才能降至椭圆轨道Ⅱ | ||||
D、“嫦娥三号”在图中椭圆轨道Ⅱ上的周期为
|