题目内容
【题目】水平放置的三个不同材料制成的圆轮A、B、C,用不打滑皮带相连,如图所示(俯视图),三圆轮的半径之比为RA :RB :RC=3 :2 :1,当主动轮C匀速转动时,在三轮的边缘上分别放置一小物块P(可视为质点),P均恰能相对静止在各轮的边缘上,设小物块P所受的最大静摩擦力等于滑动摩擦力,小物块P与轮A、B、C接触面间的动摩擦因素分别为μA、μB、,μC,A、B、C三轮转动的角速度分别为 、、,则 ( )
A. : : =2 :3 :6 B. : : =6 :3 :2
C. : : =1 :2 :3 D. : : =6 :3 :2
【答案】A
【解析】小物块P水平方向只受最大静摩擦力,提供向心力,所以向心加速度a=μg,而 ,ABC三轮边缘的线速度大小相同,所以 ,所以μA:μB:μC=2:3:6;由v=Rω可知, ,所以ωA:ωB:ωC=2:3:6,故A正确.故选A.
点睛:通过皮带相连的,它们的线速度相等;还有同轴转的,它们的角速度相等,这是解题的隐含条件,再V=rω,及牛顿第二定律列式求解即可.
练习册系列答案
相关题目